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1. Introduction

In 1983, Atanassove [1] introdued the concept of intuitionstic fuzzy sets as a gen-
eralization of a fuzzy set proposed by Zadeh [24]. In 1996, Coker [5] introduced the
concept of an intuitionistic set (called an intuitionistic crisp set by Salama et al.[21])
as the generalzation of an ordinary set and the specialization of an intuitionistic
fuzzy set. After that time, many researchers [3, 4, 6, 7, 8, 20, 18, 22, 23] applied
the notion to topology. Recently, Kim et al. [10] studied the category ISet com-
posed of intuitionistic sets and morphisms between them in the sense of a topological
universe. Also, Kim et al. [11] studied some additional properties and give some
examples related to intuitionistic closures and intuitionistic interiors in intuitionistic
topological spaces. Lee et al. [15] investigate limit points and nets in an intuition-
istic topological space. Also they [16] introduced some types of continuities, open
and closed mappings, and intuitionistic subspaces. Moreover, they [17] investigated
intuitionistic relation. In particular, Bavithra et al. [2] studied intuitionistic Fell
topological spaces.



J. Kim et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

In this paper, first of all, we list some concepts related to intuitionistic sets and
some results obtained by [5, 6, 7, 10, 11]. Second, for an ITS (X, τ), we introduce
an intuitionistic hyperspace (2(X,τ), τv) [resp. (2(X,τI), τI,v) and (2(X,τIV ), τIV,v)] of
τ -type [resp. τI -type and τIV -type]. And we give some examples of each hyperspace
and obtain some properties of the hyperspace (2(X,τ), τv). Third, we find some
relationships between openess in an ITS (X, τ) and its hyperspace 2(X,τ). Finally,
we introduce an intuitionistic set-valued mapping and study its some continuities.

2. Preliminaries

In this section, we list some concepts related to intuitionistic sets and some results
obtained by [5, 6, 7, 10, 11].

Definition 2.1 ([5]). Let X be a non-empty set. Then A is called an intuitionistic
set (in short, IS) of X, if it is an object having the form

A = (AT , AF ),

such that AT ∩ AF = φ, where AT [resp. AF ] is called the set of members [resp.
nonmembers] of A.

In fact, AT [resp. AF ] is a subset of X agreeing or approving [resp. refusing or
opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by
φI [resp. XI ], is defined by φI = (φ,X) [resp. XI = (X,φ)].

In general, AT ∪AF 6= X.
We will denote the set of all ISs of X as IS(X).

Definition 2.2 ([5]). Let A,B ∈ IS(X) and let (Aj)j∈J ⊂ IS(X).
(i) We say that A is contained in B, denoted by A ⊂ B, if AT ⊂ BT and AF ⊃ BF .
(ii) We say that A equals to B, denoted by A = B, if A ⊂ B and B ⊂ A.
(iii) The complement of A denoted by Ac, is an IS of X defined as:

Ac = (AF , AT ).

(iv) The union of A and B, denoted by A ∪B, is an IS of X defined as:

A ∪B = (AT ∪BT , AF ∩BF ).

(v) The union of (Aj)j∈J , denoted by
⋃
j∈J Aj (in short,

⋃
Aj), is an IS of X

defined as: ⋃
j∈J

Aj = (
⋃
j∈J

Aj,T ,
⋂
j∈J

Aj,F ).

(vi) The intersection of A and B, denoted by A ∩B, is an IS of X defined as:

A ∩B = (AT ∩BT , AF ∪BF ).

(vii) The intersection of (Aj)j∈J , denoted by
⋂
j∈J Aj (in short,

⋂
Aj), is an IS

of X defined as: ⋂
j∈J

Aj = (
⋂
j∈J

Aj,T ,
⋃
j∈J

Aj,F ).

(viii) A−B = A ∩Bc.
(ix) [ ]A = (AT , AT

c), < > A = (AF
c, AF ).
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Result 2.3 ([10], Proposition 3.6). Let A,B,C ∈ IS(X). Then
(1) (Idempotent laws): A ∪A = A, A ∩A = A,
(2) (Commutative laws): A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws): A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws): (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ φI = A, A ∩ φI = φI ,

(8b) A ∪XI = XI , A ∩XI = A,
(8c) XI

c = φI , φI
c = XI ,

(8d) in general, A ∪Ac 6= XI , A ∩Ac 6= φI .

We will denote the family of all ISs A in X such that AT ∪ AF = X as IS∗(X),
i.e.,

IS∗(X) = {A ∈ IS(X) : AT ∪AF = X}.
In this case, it is obvious that A ∩Ac = φI and A ∪Ac = XI and thus

(IS∗(X),⊂, φI , XI)

is a Boolean algebra. In fact, there is a one-to-one correspondence between P (X) and
IS∗(X), where P (X) denotes the power set of X. Moreover, for any A,B ∈ IS∗(X),

A = AI = [ ]A =< > A and A ∪B,A ∩B,A−B ∈ IS∗(X).

Definition 2.4 ([5]). Let X be a non-empty set, a ∈ X and let A ∈ IS(X).
(i) The form ({a}, {a}c) [resp. (φ, {a}c)]is called an intuitionistic point [resp.

vanishing point] of X and denoted by aI [resp. aIV ].
(ii) We say that aI [resp. aIV ] is contained in A, denoted by aI ∈ A [resp.

aIV ∈ A], if a ∈ AT [resp. a /∈ AF ].

We will denote the set of all intuitionistic points or intuitionistic vanishing points
in X as IP (X).

Definition 2.5 ([6]). Let X be a non-empty set and let τ ⊂ IS(X). Then τ is called
an intuitionistic topology (in short IT) on X, if it satisfies the following axioms:

(i) φI , XI ∈ τ,
(ii) A ∩B ∈ τ, for any A,B ∈ τ,
(iii)

⋃
j∈J Aj ∈ τ, for each (Aj)j∈J ⊂ τ .

In this case, the pair (X, τ) is called an intuitionistic topological space (in short,
ITS) and each member O of τ is called an intuitionistic open set (in short, IOS) in
X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if F c ∈ τ.

It is obvious that {φI , XI} is the smallest IT on X and will be called the intuition-
istic indiscreet topology and denoted by τI,0. Also IS(X) is the greatest IT on X
and will be called the intuitionistic discreet topology and denoted by τI,1. The pair
(X, τI,0) [resp. (X, τI,1)] will be called the intuitionistic indiscreet [resp. discreet]
space.
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We will denote the set of all ITs on X as IT (X). For an ITS X, we will denote
the set of all IOSs [resp. ICSs] on X as IO(X) [resp. IC(X)].

Example 2.6. (1) ([6], Example 3.2) For any ordinary topological space (X, τo), let
τ = {(A,Ac) : A ∈ τo}. Then clearly, (X, τ) is an ITS.

(2) ([6], Example 3.4) Let (X, τ) be an ordinary topological space such that τ is
not indiscrete, where τ = {φ,X} ∪ {Gj : j ∈ J}. Then there exist two ITs on X as
follows: τ1 = {φI , XI} ∪ {(Gj , φ) : j ∈ J} and τ2 = {φI , XI} ∪ {(φ,Gcj) : j ∈ J}.

(3) ([11], Example 3.2 (4)) Let X be a set and let A ∈ IS(X). Then A is said to be
finite, if AT is finite. Consider the family τ = {U ∈ IS(X) : U = φI or U c is finite}.
Then we can easily show that τ is an IT on X.

In this case, τ will be called an intuitionistic cofinite topology on X and denoted
by ICof(X).

(4) ([11], Example 3.2 (5)) Let X be a set and let A ∈ IS(X). Then A is said
to be countable, if AT is countable. Consider the family τ = {U ∈ IS(X) : U =
φI or U c is countable}. Then we can easily show that τ is an IT on X.

In this case, τ will be called an intuitionistic cocountable topology on X and
denoted by ICoc(X).

Result 2.7 ([6], Proposition 3.5). Let (X, τ) be an ITS. Then the following two ITs
on X can be defined by:

τ0,1 = {[ ]U : U ∈ τ}, τ0,2 = {< > U : U ∈ τ}.
Furthermore, the following two ordinary topologies on X can be defined by (See

[3]):
τ1 = {UT : U ∈ τ}, τ2 = {U cF : U ∈ τ}.

Remark 2.8 ([11], Remark 3.4). (1) Let (X, τ) be an ITS such that τ ⊂ IS∗(X).
Then it is obvious that τ = τ0,1 = τ0,2.

(2) For an IT τ on a set X, we will denote two ITs τ0,1 and τ0,2 defined in Result
2.7 as τ0,1 = [ ]τ and τ0,2 =< > τ , respectively.

(3) For an IT τ on a set X, let τ1 and τ2 be ordinary topologies on X defined in
Result 2.7. Then (X, τ1, τ2) is a bitopological space by Kelly [9] (Also see Proposition
3.1 in [4]).

Definition 2.9 ([6]). Let (X, τ) be an ITS.
(i) A subfamily β of τ is called an intuitionistic base (in short, IB) for τ , if for

each A ∈ τ , A = φI or there exists β
′ ⊂ β such that A =

⋃
β

′
.

(ii) A subfamily σ of τ is called an intuitionistic subbase (in short, ISB) for τ , if

the family β = {
⋂
σ

′
: σ

′
is a finite subset of σ} is a base for τ .

In this case, the IT τ is said to be generated by σ. In fact, τ = {φI} ∪ {
⋃
β

′
:

β
′ ⊂ β}.

Definition 2.10 ([7]). Let X be an ITS, p ∈ X and let N ∈ IS(X). Then
(i) N is called a neighborhood of pI , if there exists an IOS G in X such that

pI ∈ G ⊂ N, i.e., p ∈ GT ⊂ NT and GF ⊃ NF ,
(ii) N is called a neighborhood of pIV , if there exists an IOS G in X such that

pIV ∈ G ⊂ N, i.e., GT ⊂ NT and p /∈ GF ⊃ NF .
4
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We will denote the set of all neighborhoods of pI [resp. pIV ] by N(pI) [resp.
N(pIV )].

Result 2.11 ([7], Proposition 3.4). Let (X, τ) be an ITS. We define the families

τI = {G : G ∈ N(pI), for each pI ∈ G}
and

τIV = {G : G ∈ N(pIV ), for each pIV ∈ G}.
Then τI , τIV ∈ IT (X).

In fact, from Remark 4.5 in [11], we can see that for an IT τ on a set X and each
U ∈ τ ,

τI = τ ∪ {(UT , SU ) : SU ⊂ UF } ∪ {(φ, S) : S ⊂ X}
and

τIV = τ ∪ {(SU , UF ) : SU ⊃ UT and SU ∩ UF = φ}.

Result 2.12 ([7], Proposition 3.5). Let (X, τ) be an ITS. Then τ ⊂ τI and τ ⊂ τIV .

Result 2.13 ([11], Corollary 4.8). Let (X, τ) be an ITS and let ICτ [resp. ICτI
and ICτIV ] be the set of all ICSs w.r.t. τ [resp. τI and τIV ]. Then

ICτ (X) ⊂ ICτI (X) and ICτ (X) ⊂ ICτIV (X).

Result 2.14 ([7], Proposition 3.9). Let (X, τ) be an ITS. Then τ = τI ∩ τIV .

Result 2.15 ([11], Corollary 4.13). Let (X, τ) be an ITS and let ICτ ]. Then

ICτ (X) = ICτI (X) ∩ ICτIV (X).

Definition 2.16 ([6]). Let (X, τ) be an ITS and let A ∈ IS(X).
(i) The intuitionistic closure of A w.r.t. τ , denoted by Icl(A), is an IS of X

defined as:
Icl(A) =

⋂
{K : Kc ∈ τ and A ⊂ K}.

(ii) The intuitionistic interior of A w.r.t. τ , denoted by Iint(A), is an IS of X
defined as:

Iint(A) =
⋃
{G : G ∈ τ and G ⊂ A}.

Result 2.17 ([6], Proposition 3.15). Let (X, τ) be an ITS and let A ∈ IS(X). Then

Iint(Ac) = (Icl(A))c and Icl(Ac) = (Iint(A))c.

3. Intuitionistic hyperspaces

In this section, for an ITS (X, τ), we introduce an intuitionistic hyperspace
(2(X,τ), τv) [resp. (2(X,τI), τI,v) and (2(X,τIV ), τIV,v)] of τ -type [resp. τI -type and
τIV -type]. And we give some examples of each hyperspace and obtain some proper-
ties of the hyperspace (2(X,τ), τv).

Notation 3.1. Let (X, τ) be an ITS. Then
(1) 2(X,τ) = {E ∈ IS(X) : φI 6= E ∈ ICτ (X)},
(2) 2(X,τI) = {E ∈ IS(X) : φI 6= E ∈ ICτI (X)},
(3) 2(X,τIV ) = {E ∈ IS(X) : φI 6= E ∈ ICτIV (X)},
(4) F2(X,τ),n(X) = {E ∈ 2(X,τ) : ET has at most n elements},

5
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(5) F2(X,τ)(X) = {E ∈ 2(X,τ) : ET is finite},
(6) K2(X,τ)(X) = {E ∈ 2(X,τ) : E is compact},
(7) C2(X,τ)(X) = {E ∈ 2(X,τ) : E is connected},
(8) C2(X,τ),K(X) = K2(X,τ)(X) ∩ C(2(X,τ)(X).

The following is the immediate result of Notation 3.1, and Results 2.12 and 2.14.

Proposition 3.2. Let (X, τ) be an ITS. Then

2(X,τ) ⊂ 2(X,τI) and 2(X,τ) ⊂ 2(X,τIV ).

Moreover, 2(X,τ) = 2(X,τI) ∩ 2(X,τIV ).

Example 3.3. Let X = {a, b, c} and let τ be the IT on X given by:

τ = {φI , XI , A1, A2, A3, A4},

where A1 = ({a}, {b}), A2 = ({b}, {c}), A3 = ({a, b}, φ), A4 = (φ, {b, c}).
Then τI = τ ∪ {A5, A6, A7, A8, A9} and τI = τ ∪ {A10, A11, A12},
where A5 = (φ, {a}), A6 = (φ, {b}), A7 = (φ, {c}), A8 = (φ, {a, b}),

A9 = (φ, {a, c}), A10 = ({a, c}, {b}), A11 = ({a, b}, {c}), A12 = ({a}, {b, c}).
Thus ICτ (X) = {φI , XI , F1, F2, F3, F4},

ICτI (X) = ICτ (X) ∪ {F5, F6, F7, F8, F9}
and

ICτIV (X) = ICτ (X) ∪ {F10, F11, F12},
where F1 = ({b}, {a}), F2 = ({c}, {b}), F3 = (φ, {a, b}), F4 = ({b, c}, φ),

F5 = ({a}, φ), F6 = ({b}, φ), F7 = ({c}, φ), F8 = ({a, b}, φ),
F9 = ({a, c}, φ), F10 = ({b}, {a, c}), F11 = ({c}, {a, b}), F12 = ({b, c}, {a}).

So 2(X,τ) = {XI , F1, F2, F3, F4},
2(X,τI) = 2(X,τ) ∪ {F5, F6, F7, F8, F9},
2(X,τIV ) = 2(X,τ) ∪ {F10, F11, F12}.

In fact, we can confirm that Proposition 3.2 holds.

Proposition 3.4. Let (X, τ) be an ITS and let

βτ,v = {< U1, U2, ..., Un >τ,v: Uj ∈ τ for j = 1, ..., n},

βτI ,v = {< U1, U2, ..., Un >τI ,v: Uj ∈ τ for j = 1, ..., n},

βτIV ,v = {< U1, U2, ..., Un >τIV ,v: Uj ∈ τ for j = 1, ..., n},

where < U1, U2, ..., Un >τ,v
= {E ∈ 2(X,τ) : E ⊂

⋃n
j=1 Uj and E ∩ Uj 6= φI for j = 1, ..., n},

< U1, U2, ..., Un >τI ,v
= {E ∈ 2(X,τI) : E ⊂

⋃n
j=1 Uj and E ∩ Uj 6= φI for j = 1, ..., n},

< U1, U2, ..., Un >τIV ,v
= {E ∈ 2(X,τIV ) : E ⊂

⋃n
j=1 Uj and E ∩ Uj 6= φI for j = 1, ..., n},

Then there exists a unique topology τv [resp. τI,v and τIV,v] on 2(X,τ) [resp. 2(X,τI)

and 2(X,τIV )] such that βτ,v [resp. βτI ,v and βτIV ,v] is a base for τv [resp. τI,v and
τIV,v].

6
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Proof. Clearly, XI ∈ τ and < XI >τ,v∈ βτ,v. Then
⋃
βτ,v =< XI >τ,v= 2(X,τ).

Let < U1, U2, ..., Un >τ,v, < V1, V2, ..., Vm >τ,v∈ βτ,v and let U =
⋃n
i=1 Ui, V =⋃m

j=1 Vj . Let Bτ,v =< U1 ∩ V,U2 ∩ V, ..., Un ∩ V,U ∩ V1, U ∩ V2, ..., U ∩ Vm >τ,v.

Let E ∈ Bτ,v. Then E ⊂
⋃n
i=1[(Ui ∩ V )] ∪

⋃m
j=1[(U ∩ Vj)], E ∩ Ui ∩ V 6= φI , for

i = 1, ..., n and E ∩ U ∩ Vj 6= φI , for j = 1, ...,m. Thus

F ∈ Bτ,v =< U1, U2, ..., Un >τ,v ∩ < V1, V2, ..., Vm >τ,v .

So βτ,v generates the unique topology τv on 2(X,τ) such that βτ,v is a base for τv.
Similarly, we can show that βτI ,v and βτIV ,v generate the unique topologies ττI ,v

and ττIV ,v on 2(X,τI) and 2(X,τIV ) such that βτI ,v and βτIV ,v are bases for ττI ,v and
ττIV ,v, respectively. �

In the above Proposition, the topology τv [resp. τI,v and τIV,v] on 2(X,τ) [resp.

2(X,τI) and 2(X,τIV )] induced by βτ,v [resp. βτI ,v and βτIV ,v] will be called the in-

tuitionistic Vietories topology (in short, IVT) on 2(X,τ) [resp. 2(X,τI) and 2(X,τIV )].
The pair (2(X,τ), τv) [resp. (2(X,τI), τI,v) and (2(X,τIV ), τIV,v)] will be called an intu-
itionistic hyperspace of τ -type [resp. τI -type and τIV -type].

The following is the immediate result of Proposition 3.4, and Results 2.12 and
2.14.

Proposition 3.5. Let (X, τ) be an ITS. Then τv ⊂ τI,v and τv ⊂ τIV,v. Moreover,

τv = τI,v ∩ τIV,v.

Example 3.6. Let (X, τ) be the ITS in Example 3.3. Then we can easily check the
followings:
τv = {φ, {F1}, {F3}, {F1, F3}, {F2, F4, XI}, {F1, F2, F4, XI}, {F2, F3, F4, XI}, 2(X,τ)},
τI,v = {φ, {F1}, {F3}, {F5}, {F1, F3}, {F1, F5}, {F1, F6}, {F3, F5}, {F5, F8},

{F1, F3, F5}, {F1, F3, F6}, {F1, F5, F8}, {F5, F6, F8}, {F1, F5, F6, F8},
{F1, F3, F5, F6}, {F1, F3, F5, F8}, {F3, F5, F6, F8}, {F1, F3, F5, F6, F8},
{F2, F4, XI}, {F1, F2, F4, XI}, {F2, F3, F4, XI}, 2(X,τ)},
{F1, F4, F5, F6, F7, F8, F9, XI}, {F1, F3, F4, F5, F6, F7, F8, F9, XI},
{F1, F2, F4, F5, F6, F7, F8, F9, XI}, 2(X,τI)},

τIV,v = {φ, {F1}, {F2}, {F3}, {F10}, {F1, F2}, {F1, F3}, {F1, F10}, {F2, F3}, {F2, F10},
{F3, F10}, {F1, F2, F3}, {F1, F3, F10}, {F2, F3, F10}, {F1, F2, F3, F10},
{F2, F4, XI}, {F1, F2, F4, XI}, {F2, F3, F4, XI}, 2(X,τ)},
{F1, F2, F4, F10, F12, XI}, {F1, F2, F2, F3, F11, F12, XI}, 2(X,τIV )}.

In fact, we can confirm that Proposition 3.5 holds.

Proposition 3.7. Let (X, τ) be an ITS. Then the following two subfamilies βτ0,1
and βτ0,2 of 2(X,τ), respectively can be defined by:

βτ0,1 = {< [ ]U1, · · · , [ ]Un >τ0,1 : Uj ∈ τ for j = 1, ..., n}
and

βτ0,2 = {<< > U1, · · · , < > Un >τ0,2 : Uj ∈ τ for j = 1, ..., n},
where < [ ]U1, · · · , [ ]Un >τ0,1

= {[ ]E ∈ 2(X,τ0,1) : [ ]E ⊂
⋃n
j=1[ ]Uj , [ ]E ∩ [ ]Uj 6= φI , for j = 1, ..., n,

7
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Ec ∈ τ}
and

<< > U1, · · · , < > Un >τ0,2
= {< > E ∈ 2(X,τ0.2) :< > E ⊂

⋃n
j=1 < > Uj , < > E∩ < > Uj 6= φI ,

for j = 1, ..., n, Ec ∈ τ}.
Furthermore, βτ0,1 and βτ0,2 generate unique topologies (τ0,1)v and (τ0,2)v on

2(X,τ).

In this case, the pair (2(X,τ), (τ0,1)v) [resp. (2(X,τ), (τ0,2)v)] will be called an
intuitionistic hyperspace of τ0,1-type [resp. τ0,2-type] and simply, will be denoted

2(X,τ0,1) [resp. 2(X,τ0,2)].

Proof. The proofs are easy. �

Example 3.8. Let (X, τ) be the ITS in Example 3.3. Then
[ ]A1 = ({a}, {b, c}), [ ]A2 = ({b}, {a, c}), [ ]A3 = ({a, b}, {c})

and
< > A1 = ({a, c}, {b}), < > A2 = ({a, b}, {c}), < > A3 = ({a}, {b, c}).

Thus

ICτ0,1(X) = {φI , XI , [ ]F1, [ ]F2, [ ]F4}
and

ICτ0,2(X) = {φI , XI , < > F1, < > F2, < > F3},

where [ ]F1 = ({b}, {a, c}), [ ]F2 = ({c}, {a, b}), [ ]F4 = ({b, c}, {a})
and

< > F1 = ({b, c}, {a}), < > F2 = ({a, c}, {b}), < > F3 = ({c}, {a, b}).
So (τ0,1)v = {φ, {XI}, {[ ]F1, [ ]F4, XI}, 2(X,τ0,1}
and

(τ0,2)v = {φ, {< > F2}, {< > F2, < > F3}, {< > F2, XI},
{< > F1, < > F2, XI}, {< > F2, < > F3, XI}, 2(X,τ0,2}.

Proposition 3.9. Let (X, τ) be an ITS. Then the following two ordinary subfamilies
βτ1 and βτ2 of 2(X,τ), respectively can be defined by:

βτ1 = {< U1,T , · · · , Un,T >τ1 : Uj ∈ τ for j = 1, ..., n}
and

βτ2 = {< U c1,F , · · · , U cn,F >τ2 : Uj ∈ τ for j = 1, ..., n},
where < U1,T , · · · , Un,T >τ1

= {E ∈ 2(X,τ1) : E ⊂
⋃n
j=1 Uj,T and E ∩ Uj,T 6= φ for j = 1, ..., n}

and
< U c1,F , · · · , U cn,F >τ2

= {E ∈ 2(X,τ2) : E ⊂
⋃n
j=1 U

c
j,F and E ∩ U cj,F 6= φ for j = 1, ..., n}.

Furthermore, βτ1 and βτ2 generate unique ordinary Vietories topologies τ1,v and
τ2,v on 2X .

In this case, the pair (2(X,τ), τ1,v)) [resp. (2(X,τ), τ2,v))] will be called an ordi-

nary hyperspace of τ1-type [resp. τ2-type] and simply, will be denoted 2(X,τ1) [resp.
8
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2(X,τ2)], and the triple (2(X,τ), τ1,v, τ2,v) will be called an ordinary bihyperspace in-
duced by (X, τ).

Proof. The proofs are easy. �

Example 3.10. Let X = {a, b, c} and let τ be the IT on X given by:

τ = {φI , XI , A1, A2, A3, A4, A5},
where A1 = ({a, b}, {c}), A2 = ({b, c}, {a}), A3 = ({a}, {c})

A4 = ({b}, {a, c}), A5 = (φ, {a, c}).
Then

τ1 = {φ,X, {a}, {b}, {a, b}, {b, c}}
and

τ2 = {φ,X, {b}, {a, b}, {b, c}}.
Thus τ c1 = {φ,X, {a}, {c}, {b, c}, {a, c}} and τ c2 = {φ,X, {a}, {c}, {a, c}}.
where τ c1 and τ c2 denote the families of closed sets in (X, τ1) and (X, τ2), respectively.
So τ1,v = {{φ}, {{a}}, {{c}}, {{b, c}}, {{a, c}}, {{b, c}, {a, c}}, 2(X,τ1)}
and

τ2,v = {{φ}, {{a}}, {{c}}, {{a, c}}, 2(X,τ2)}.

Proposition 3.11. Let X be an ITS, A,B ∈ IS(X) and let (Aα)α∈Γ ⊂ IS(X).

Then 2A∩B = 2A ∩ 2B and generally, 2
⋂
α∈Γ Aα =

⋂
α∈ΓAα,

where 2A = {E ∈ 2(X,τ) : E ⊂ A}.

Proof. E ∈ 2A∩B ⇔ E ∈ 2(X,τ) such that E ⊂ A ∩B
⇔ E ∈ 2(X,τ) such that E ⊂ A and E ⊂ B
⇔ E ∈ 2A and E ∈ 2B , i.e., E ∈ 2A ∩ 2B .

On the other hand,
E ∈ 2

⋂
α∈Γ Aα ⇔ E ∈ 2XI such that E ⊂

⋂
α∈ΓAα

⇔ E ∈ 2XI such that E ⊂ Aα, for each α ∈ Γ
⇔ E ∈ 2XI , for each α ∈ Γ
⇔ E ∈

⋂
α∈Γ 2Aα .

�

Definition 3.12 ([3]). An ITS X is said to be a:
(i) T1(i)-space, if for any x 6= y ∈ X, there exist U, V ∈ IO(X) such that

xI ∈ U, yI /∈ U and xI /∈ V, yI ∈ V,
(ii) T1(ii)-space, if for any x 6= y ∈ X, there exist U, V ∈ IO(X) such that

xIV ∈ U, yIV /∈ U and xIV /∈ V, yIV ∈ V,
(iii) T1(iii)-space, if for any x 6= y ∈ X, there exist U, V ∈ IO(X) such that

xI ∈ U ⊂ ycI and yI ∈ V ⊂ xcI ,
(iv) T1(iv)-space, if for any x 6= y ∈ X, there exist U, V ∈ IO(X) such that

xIV ∈ U ⊂ ycIV and yIV ∈ V ⊂ xcIV ,
(v) T1(v)-space, if for any x 6= y ∈ X, there exist U, V ∈ IO(X) such that

yI /∈ U and xI /∈ V,
9
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(vi) T1(vi)-space, if for any x 6= y ∈ X, there exist U, V ∈ IO(X) such that

yIV /∈ U and xIV /∈ V,
(vii) T1(vii)-space, if for each x ∈ X, xI ∈ IC(X),
(viii) T1(viii)-space, if for each x ∈ X, xIV ∈ IC(X).

Result 3.13 ([3], Theorem 3.2). Let (X, τ) be an ITS. Then the following implica-
tions are true:

T1(v) � T1(vi)

6 6

T1(i) � T1(i)+T1(ii) -T1(ii)

?
6

?

T1(vii)� T1(iii) T1(iv)

Result 3.14 ([3], Proposition 3.11). Let (X, τ) be an ITS. Then
(1) (X, τ) is T1(i) if and only if (X, τ1) is T1,
(2) (X, τ) is T1(ii) if and only if (X, τ2) is T1,
(3) (X, τ) is T1(i) if and only if (X, τ0,1) is T1(i),
(4) (X, τ) is T1(ii) if and only if (X, τ0,2) is T1(ii).

Proposition 3.15. Let (X, τ) be an ITS such that τ ⊂ IS∗(X). Then
(1) (X, τ) is T1(vii) if and only if (X, τ0,1) is T1(vii),
(2) (X, τ) is T1(viii) if and only if (X, τ0,1) is T1(viii).

Proof. For any A ∈ IS∗(X), we can easily see that [ ]Ac = ([ ]A)c. Then from this
fact and Definition 2.16 (i), we can prove that (1) and (2) hold. �

Proposition 3.16. Let (X, τ) be an ITS.
(1) If (X, τ) is T1(vii), then (X, τ1) is T1, i.e., {x} is closed in (X, τ1), for each

x ∈ X.
(2) If (X, τ) is T1(viii), then (X, τ2) is T1, i.e., {x} is closed in (X, τ2), for each

x ∈ X.

Proof. (1) Suppose (X, τ) is T1(vii) and let x 6= y ∈ X. Then clearly, xI , yI ∈
IC(X). Thus xcI , y

c
I ∈ τ. Moreover, xI /∈ xcI , xI ∈ ycI and yI ∈ xcI , yI /∈ ycI . So

(X, τ) is T1(i). Hence by Result 3.14 (1), (X, τ1) is T1.
(2) The proof is similar. �

Theorem 3.17. Let X be T1(iii) [resp. T1(viii)]. Then A ⊂ B if and only if
2A ⊂ 2B and thus A = B if and only if 2A = 2B.

Proof. (⇒): It is obvious.
(⇐): Suppose 2A ⊂ 2B and let pI ∈ A. Since X is T1(iii), by Result 3.13, it is

T1(vii). Then pI ∈ IC(X) and pI ⊂ A. Thus pI ∈ 2A. By the hypothesis, pI ∈ 2B ,
i.e., pI ⊂ B. So pI ∈ B. Hence A ⊂ B.

Now let pIV ∈ A. Since X is T1(viii), by Definition 3.12, pIV ∈ IC(X). Then
pIV ∈ 2A. Thus by the hypothesis, pI ∈ 2B , i.e., pI ⊂ B. So pI ∈ B. Hence A ⊂ B.
This completes the proof. �

10
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Proposition 3.18. Let (X, τ) be an ITS. Then

(2A
c

)c = 2XI − 2A
c

= {E ∈ 2(X,τ) : E ∩A 6= φI}.

Proof. E ∈ (2A
c

)c ⇔ E /∈ 2A
c ⇔ E 6⊂ Ac ⇔ ET 6⊂ AF or EF 6⊃ AT

⇔ ET ∩AT 6⊂ AF ∩AT = φ or EF ∪AT 6⊃ AT ∪AT = AT
⇔ E ∩A 6= φI . �

Theorem 3.19. Let (X, τ) be a T1(iii)-space and let A ∈ IS(X). Then

2Icl(A) = cl(2A),

where cl(2A) denotes the closure of 2A in 2(X,τ).

Proof. It is clear that A ⊂ Icl(A). Then 2A ⊂ 2Icl(A).
Let E ∈ 2Icl(A), i.e., E ⊂ Icl(A). Let < U1, ..., Un >τv containing E. Then

E ⊂
⋃n
j=1 Uj and E ∩ Uj 6= φI , for j = 0, 1, 2, ..., n. Since E ⊂ Icl(A), there exists

pj,I ∈ A ∩ Uj , for j = 1, 2, ..., n. Let F =
⋃
{p1,I , ..., pn,I}. Since (X, τ) is a T1(iii)-

space, by Definition 3.12 and Result 3.13, pj,I ∈ IC(X), for j = 1, 2, ..., n. Thus

F ∈ IC(X). So F ∈ 2A∩ < U1, ..., Un >τv . Hence E ∈ cl(2A), i.e., 2A ⊂ 2Icl(A) ⊂
cl(2A). Therefore 2Icl(A) = cl(2A). �

The following is the immediate result of Theorem 3.19.

Corollary 3.20. Let (X, τ) be a T1(iii)-space and let A ∈ IC(X). Then 2A is
closed in 2(X,τ).

Proof. Since A ∈ IC(X), Icl(A) = A. Then by 3.19, cl(2A) = 2Icl(A) = 2A. Thus
2A is closed in 2(X,τ). �

Theorem 3.21. Let (X, τ) be a T1(iii)-space and let A ∈ IS(X). Then

2Iint(A) = int(2A),

where int(2A) denotes the interior of 2A in 2(X,τ).

Proof. It is clear that Iint(A) ⊂ A. Then 2Iint(A) ⊂ 2A.
Assume that E /∈ 2Iint(A). Then E 6⊂ Iint(A). Thus there exists a ∈ X such

that aI ∈ E but aI /∈ Iint(A). Let E ∈< U1, ..., Un >τv . Then E ⊂
⋃n
j=1 Uj and

E ∩ Uj 6= φI , for j = 1, 2, ..., n. Since aI ∈ Uj ∈ τ , for some j and aI /∈ Iint(A),
Uj 6⊂ Iint(A). Thus there exists bj ∈ X such that bj,I ∈ Uj but bj,I /∈ A. Since
(X, τ) is a T1(iii)-space, bj,I ∈ IC(X). Let F = E ∪ bj,I . Then clearly, F 6⊂ A.
Furthermore, F ⊂

⋃n
j=1 Uj and F ∩ Uj 6= φI , for j = 1, 2, ..., n. Thus F ∈<

U1, ..., Un >τv . So each neighbourhood of E in 2(X,τ) contains an F such that F 6⊂ A,
i.e., F ∈ (2A)c. Hence F ∈ cl((2A)c), i.e., F /∈ int(2A), i.e., int(2A) ⊂ 2Iint(A).
Therefore 2Iint(A) = int(2A). �

The following is the immediate result of Result 2.17 and Theorems 3.21.

Corollary 3.22. Let (X, τ) be a T1(iii)-space and let A ∈ IC(X). Then (2A
c

)c is
closed in 2(X,τ).

11
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Proof. cl((2A
c

)c) = [int(2A
c

)]c

= (2IintA
c

)c [By Theorem 3.21]
= [(2(Icl(A)c ]c [By Result 2.17]
= (2A

c

)c. [Since A ∈ IC(X)]
Then (2A

c

)c is closed in 2(X,τ). �

Theorem 3.23. Let (X, τ) be T1(iii) [resp. T1(viii)].
(1) < U1, · · · , Un >⊂< V1, · · · , Vm > if and only if

⋃n
i=1 Ui ⊂

⋃m
j=1 Vj and there

is Ui such that Ui ⊂ Vj, for each Vj.
(2) cl(< U1, · · · , Un >) =< Icl(U1), · · · , Icl(Un) >, where τ ⊂ IS∗(X).

Proof. (1) U =< U1, · · · , Un > and V =< V1, · · · , Vm >. Suppose U ⊂ V and
assume that

⋃n
i=1 Ui 6⊂

⋃m
j=1 Vj , say xn+1,I ∈

⋃n
i=1 Ui but xn+1,I /∈

⋃m
j=1 Vj . Let

xi,I ∈ Ui, for each i = 1, · · · , n and let E = ∪{xi,I : i = 1, · · · , n+1}. Since (X, τ) is
T1(iii), by Result 3.13, xi,I ∈ IC(X), for each i = 1, · · · , n+ 1. Then E ∈ IC(X).
Thus E ∈ U − V. This contradicts the fact that U ⊂ V. So

⋃n
i=1 Ui ⊂

⋃m
j=1 Vj .

Now assume that there is Vj such that Ui − Vj 6= φ, for all i = 1, · · · , n and let
xi,I ∈ Ui − Vj . Let F = ∪{xi,I : i = 1, · · · , n}. Then by 3.13, xi,I ∈ IC(X), for
each i = 1, · · · , n. Thus F ∈ IC(X). So F ∈ U−V. This contradicts the fact that
U ⊂ V. Hence there is Ui such that Ui ⊂ Vj , for each Vj .

Suppose U ⊂ V and assume that
⋃n
i=1 Ui 6⊂

⋃m
j=1 Vj , say xn+1,IV ∈

⋃n
i=1 Ui but

xn+1,IV /∈
⋃m
j=1 Vj . Let xi,IV ∈ Ui, for each i = 1, · · · , n and let E = ∪{xi,IV : i =

1, · · · , n + 1}. Since (X, τ) is T1(viii), by Definition 3.12, xi,IV ∈ IC(X), for each
i = 1, · · · , n+ 1. Then E ∈ IC(X). Thus E ∈ U−V. This contradicts the fact that
U ⊂ V. So

⋃n
i=1 Ui ⊂

⋃m
j=1 Vj . Now assume that there is Vj such that Ui − Vj 6= φ,

for all i = 1, · · · , n and let xi,IV ∈ Ui − Vj . Let F = ∪{xi,IV : i = 1, · · · , n}. Then
by Definition 3.12, xi,IV ∈ IC(X), for each i = 1, · · · , n. Thus F ∈ IC(X). So
F ∈ U − V. This contradicts the fact that U ⊂ V. Hence there is Ui such that
Ui ⊂ Vj , for each Vj .

Conversely, suppose the necessary conditions hold, and let E ∈ 2(X,τ) and let
E ∈ U. Then clearly, E ⊂

⋃n
i=1 Ui. Thus by the hypothesis, E ⊂

⋃m
j=1 Vj . Now let

Ui be such that Ui ⊂ Vj . Since E ∩Ui 6= φI and E ∩ Vj 6= φI , E ∩ Vj 6= φI , for each
j. So E ∈ V. Hence U ⊂ V.

(2) Let E ∈< Icl(U1), · · · , Icl(Un) >, let V =< V1, · · · , Vm >∈ Nτv (E), and let
U =

⋃n
i=1 Ui and V =

⋃m
j=1 Vi. Since V ∈ Nτv (E), E ∈ V, i.e., E ⊂ V . Thus

E ⊂ Icl(V ). Moreover, E ∩ Icl(Ui) 6= φI , for i = 1, · · · , n and E ∩ Vi 6= φI , for
j = 1, · · · ,m. So V ∩ Icl(Ui) 6= φI 6= Vj ∩ Icl(U) imply that V ∩ Ui 6= φI 6= Vj ∩ U ,
for i = 1, · · · , n and j = 1, · · · ,m. Choose xi,I ∈ V ∩ Ui [resp. xi,IV ∈ V ∩ Ui],
for i = 1, · · · , n and yj,I ∈ Vj ∩ U [resp. yj,IV ∈ Vj ∩ U ], for j = 1, · · · ,m and let
F = [

⋃n
i=1 xi,I ] ∪ [

⋃m
j=1 yj,I ] [resp. F = [

⋃n
i=1 xi,IV ] ∪ [

⋃m
j=1 yj,IV ]]. Since (X, τ)

be both T1(iii) and T1(viii), by Result 3.13 [resp. Definition 3.12], F ∈ IC(X).
Moreover, F ∈ U ∩ V 6= φ. So E is a limit point of U, i.e., E ∈ cl(U). Hence
< Icl(U1), · · · , Icl(Un) >⊂ cl < U1, · · · , Un >.

On the other hand, we can easily that

< Icl(U1), · · · , Icl(Un) >= (

n⋂
i=1

{E ∈ 2(X,τ) : E ∩ Icl(Ui) 6= φI})∩ < Icl(U) > .

12
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Then by Corollary 3.22, {E ∈ 2(X,τ) : E ∩ Icl(Ui) 6= φI} is closed in 2(X,τ). Thus
(
⋂n
i=1{E ∈ 2(X,τ) : E ∩ Icl(Ui) 6= φI})∩ < Icl(U) > is closed in 2(X,τ). So <

Icl(U1), · · · , Icl(Un) > is closed in 2(X,τ) and V ⊂< Icl(U1), · · · , Icl(Un) >. Hence
cl(U) ⊂< Icl(U1), · · · , Icl(Un) >. This completes the proof. �

4. The relationships between openess in ITS (X, τ) and its hyperspace
2(X,τ)

In this section, we find some relationships between openess in an ITS (X, τ) and
its hyperspace 2(X,τ).

Result 4.1 ([11], Proposition 3.16). Let (X, τ) be a ITS such that τ ⊂ IS∗(X) and
let A ∈ IS∗(X).

(1) If there is U ∈ τ such that aI ∈ U ⊂ A, for each aI ∈ A, then A ∈ τ .
(2) If there is U ∈ τ such that aIV ∈ U ⊂ A, for each aIV ∈ A, then A ∈ τ .

Proposition 4.2. Let (X, τ) be T1(iii) [resp. T1(viii)].
(1) If {Uj}j∈J is a neighborhood base at xI [resp. xIV ] , then {< Uj >}j∈J is a

neighborhood base at {xI} [resp. {xIV }] in 2(X,τ).
(2) If O is open in 2(X,τ), then ∪O ∈ τ , where τ ⊂ IS∗(X).
(3) If U ∈ τ , then 2U =< U > is open in 2(X,τ), where τ ⊂ IS∗(X).

Proof. (1) It is clear that {xI} ∈ 2(X,τ) [resp. {xIV } ∈ 2(X,τ)]. Let U, V ∈ {<
Uj >}j∈J such that {xI} ∈ U ∩V [resp. {xIV } ∈ U ∩V]. Then there are i, j ∈ J
such that U =< Ui >, V =< Vj >. Since {xI} ∈ U ∩ V [resp. xIV ∈ U ∩ V],
{xI} ∈< Ui > and {xI} ∈< Uj > [resp. xIV ∈< Ui > and xIV ∈< Uj >]. Thus
{xI} ⊂ Ui and {xI} ⊂ Uj [resp. {xIV } ⊂ Ui and {xIV } ⊂ Uj ], i.e., xI ∈ Ui and
xI ∈ Uj [resp. xIV ∈ Ui and xIV ∈ Uj ]. So by the hypothesis, there is k ∈ J such
that xI ∈ Uk ⊂ Ui ∩ Uj [resp. xIV ∈ Uk ⊂ Ui ∩ Uj ]. Hence {xI} ∈< Uk >⊂< Ui >
∩ < Uj > [resp. {xIV } ∈< Uk >⊂< Ui > ∩ < Uj >]. This completes the proof.

(2) It is sufficient to show that for each base element U =< U1, · · · , Un >,
⋃

U ∈ τ .
Let U =

⋃
U and let xI ∈ U [resp. xIV ∈ U ]. Let O ∈ τ such that xI ∈ O ⊂

⋃n
i=1 Ui

[resp. xIV ∈ O ⊂
⋃n
i=1 Ui] and let yI ∈ O [resp. yIV ∈ O]. Choose xi,I ∈ Ui

[resp. xi,IV ∈ Ui], for for i = 1, · · · , n and let E =
⋃
{x1,I , · · · , xn,I , yI} [resp.

E =
⋃
{x1,V , · · · , xn,IV , yIV }]. Since (X, τ) is T1(iii) [resp. T1(viii)], by Result

3.13 [resp. Definition 3.12], E ∈ IC(X). Moreover, E ⊂
⋃n
i=1 Ui and E ∩ Ui 6= φI .

Then yI ∈ E ∈ U [resp. yIV ∈ E ∈ U]. So yI ∈ U . Hence O ⊂ U , i.e., xI ∈ O ⊂ U
[resp. xIV ∈ O ⊂ U ]. Therefore by Result 4.1, U =

⋃
U ∈ τ .

(3) By Theorem 3.21, 2U = 2Iint(U) = int(2U ). Then 2U is open in 2(X,τ). �

The followings are immediate results of Propositions 3.15 and 4.2.

Corollary 4.3. Let (X, τ) be T1(iii) [resp. T1(viii)] such that τ ⊂ IS∗(X).
(1) If {Uj}j∈J is a neighborhood base at xI [resp. xIV ] , then {< [ ]Uj >}j∈J

[resp. {<< > Uj >}j∈J is a neighborhood base at {xI} [resp. {xIV }] in 2(X,τ0,1)

[resp. 2(X,τ0,2)].
(2) If O is open in 2(X,τ0,1) [resp. 2(X,τ0,2)], then ∪O ∈ τ0,1 [resp. ∪O ∈ τ0,2].

(3) If U ∈ τ0,1 [resp. U ∈ τ0,2], then 2U =< U > is open in 2(X,τ0,1) [resp.

2(X,τ0,2)].
13
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The followings are immediate results of Proposition 4.2 and Result 3.14.

Corollary 4.4. Let (X, τ) be T1(iii) [resp. T1(viii)].
(1) If {Uj}j∈J is a neighborhood base at xI [resp. xIV ] , then {< Uj,T >}j∈J

[resp. {< U cj,F >}j∈J is a neighborhood base at {x} in 2(X,τ1) [resp. 2(X,τ2)].

(2) If O is open in 2(X,τ1) [resp. 2(X,τ2)], then ∪O ∈ τ1 [resp. ∪O ∈ τ2].
(3) If U ∈ τ1 [resp. U ∈ τ2], then 2U =< U > is open in 2(X,τ1) [resp. 2(X,τ2)].

Definition 4.5 ([6]). Let (X, τ) be an ITS and let A ∈ IS(X).
(i) A ⊂ IS(X) is called a cover of A, if A ⊂

⋃
A∈AA.

(ii) The cover A of A is called an open cover, if A ∈ τ , for each A ∈ A.
In particular, A is called an open cover of X, if A ⊂ τ and A ⊂

⋃
A.

(iii) A is called an intuitionistic compact subset of X, if every open cover of A
has a finite subcover.

(iv) (X, τ) is said to be compact, if every open cover of X has a finite subcover.
(v) A family A ⊂ IS(X) satisfies the finite intersection property (in short, FIP),

if for each finite subfamily A
′
,
⋂

A
′ 6= φI .

Result 4.6 ([6], Proposition 5.4). Let (X, τ) be an ITS. Then (X, τ) is compact if
and only if (X, τ0,1) is compact. In fact, (X, τ) is compact if and only if (X, τ1) is
compact.

Proposition 4.7. Let (X, τ) be T1(iii) such that τ ⊂ IS∗(X). If U is open in the
subspace K2(X,τ)(X), then

⋃
U ∈ τ .

Proof. Without loss of generality, let U =< U1, · · · , Un > ∩ K2(X,τ)(X) and let
U =

⋃
U = {A : A ∈ U}. Let xI ∈ U . Then there is j such that xI ∈ Uj . Let us

take xi,I ∈ Ui, for each i 6= j. For each yI ∈ Ui, let

EyI =
⋃
{x1,I , · · · , xi−1,I , yI , xi+1,I , · · · , xn,I}.

Then by Result 3.13, EyI ∈ U. Thus yI ∈ EyI ⊂ U . So xI ∈ Uj ⊂ U . Hence by
Result 4.1,

⋃
U ∈ τ . �

The followings are immediate results of Proposition 4.7 and Results 3.13 and 4.6.

Corollary 4.8. Let (X, τ) be T1(iii).
(1) If U is open in the subspace K

2(X,τ0,1)(X), then
⋃

U ∈ τ0,1.
(2) If U is open in K2(X,τ1)(X), then ∪U ∈ τ1.

Proposition 4.9. Let (X, τ) be T1(iii) such that τ ⊂ IS∗(X). If U is open in the
subspace F2(X,τ),n(X), then

⋃
U ∈ τ .

Proof. Let U =
⋃
U and let x1,I ∈ U . Then there is E ∈ U such that x1,I ∈ U ∈

U. Let E =
⋃
{x1,I , · · · , xm,I}, m ≤ n. Since U is open in F2(X,τ),n(X), there

is a basic open set < U1, · · · , Uk > ∩ K2(X,τ),n(X) such that E ∈< U1, · · · , Uk >
∩ K2(X,τ),n(X) ∈ U. We may assume that xi,I ∈ U1. Let F = {U1, · · · , Uk}. For
each xi,I ∈ E, let Fi = {Uj ∈ F : xi,I ∈ Uj} and let Wi =

⋂
Fi. Then by Theorem

3.23 (1),

E ∈< W1, · · · ,Wm > ∩ F2(X,τ),n(X) ⊂< U1, · · · , Uk > ∩ F2(X,τ),n(X).
14
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Let y1,I ∈W1. Then

Ey,I = {y1,I , x2, · · · , xm} ∈< W1, · · · ,Wm > ∩ F2(X,τ),n(X)

Thus Ey,I ∈ U. So Ey,I ⊂ U . It follows that x1,I , yI ∈ W1 ⊂ U . Hence by Result
4.1,

⋃
U ∈ τ . �

The following is the immediate result of Proposition 4.9.

Corollary 4.10. Let (X, τ) be T1(iii) such that τ ⊂ IS∗(X). If U is open in the
subspace F2(X,τ)(X), then

⋃
U ∈ τ .

Definition 4.11 ([13]). An ITS X is said to be connected, if it cannot be expressed
as the union of two non-empty, disjoint open sets in X.

Definition 4.12 ([13]). (X, τ) be an ITS and let A,B ∈ IS(X).
(i) A and B are said to be separated in X, if Icl(A) ∩B = A ∩ Icl(B) = φI .
(ii) A and B are said to form a separation of X, if A and B are said to be

separated in X and A ∪B = XI .

Result 4.13 ([13], Theorem 3.4). (X, τ) be an ITS such that τ ⊂ IS∗(X). Then
the followings are equivalent:

(1) (X, τ) is connected,
(2) (X, τ0,1) is connected,
(3) (X, τ1) is connected.

Definition 4.14 ([13]). Let (X, τ) be an ITS. Then X is said to be:
(i) locally connected at pI ∈ XI , if for each U ∈ N(pI), there is a connected

V ∈ N(pI) such that V ⊂ U ,
(ii) locally connected, if it is locally connected at each pI ∈ XI .

Definition 4.15 ([12]). (i) A T1(i)-space X is called a T3(i)-space, if the following
conditions:

[the regular axiom (i)] for any F ∈ IC(X) such that xI ∈ F c, there exist U, V ∈
IO(X) such that F ⊂ U , xI ∈ V and U ∩ V = φI .

(ii) A T1(ii)-space X is called a T3(ii)-space, if the following conditions:
[the regular axiom (ii)] for any F ∈ IC(X) such that xIV ∈ F c, there exist

U, V ∈ IO(X) such that F ⊂ U , xIV ∈ V and U ∩ V = φI .

Result 4.16 ([12], Theorem 4.4). Let (X, τ) be an ITS such that τ ⊂ IS∗(X). Then
(1) (X, τ) is T3(i) if and only if (X, τ1) is T3,
(2) (X, τ) is T3(ii) if and only if (X, τ2) is T3.

Result 4.17 ([12], Theorem 4.7). Let (X, τ) be an ITS such that τ ⊂ IS∗(X). Then
(1) (X, τ) is T3(i) if and only (X, τ0,1) is T3(i),
(2) (X, τ) is T3(ii) if and only (X, τ0,2) is T3(ii).

Proposition 4.18. Let (X, τ) be locally connected both T1(iii) and T3(i) such that
τ ⊂ IS∗(X). If U is open in the subspace C2(X,τ)(X), then

⋃
U ∈ τ .

Proof. Let xI ∈ U =
⋃
U. Without loss of generality, let

U =< U1, · · · , Un > ∩ C2(X,τ)(X).
15
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Then there is E ∈ U such that xI ∈ E. Since xI ∈ U =
⋃
U, there is i such that

xI ∈ Ui. Since (X, τ) is locally connected both T1(iii) and T3(i), by Definitions
4.14 and 4.15, there is a connected set V ∈ τ such that xI ∈ V ⊂ Icl(V ) ⊂ Ui. Thus
E ∪ Icl(V ) ∈ U. So V ⊂ E ∪ Icl(V ) ⊂ U . Hence by Result 4.1 (1),

⋃
U ∈ τ . �

The followings are immediate results of Proposition 4.18 and Result 4.17.

Corollary 4.19. Let (X, τ) be locally connected both T1(iii) and T3(i) such that
τ ⊂ IS∗(X). If U is open in the subspace C

2(X,τ0,1)(X), then
⋃

U ∈ τ0,1.

5. Intuitionistic continuous set-valued mappings

In this section, we introduce an intuitionistic set-valued mapping and study its
some continuities.

Definition 5.1 ([5]). Let f : X → Y be a mapping, and let A ∈ IS(X) and
B ∈ IS(Y ). Then

(i) the image of A under f , denoted by f(A), is an IS in Y defined as:

f(A) = (f(A)T , f(A)F ),

where f(A)T = f(AT ) and f(A)F = (f(AcF ))c.
(ii) the preimage of B, denoted by f−1(B), is an IS in X defined as:

f−1(B) = (f−1(B)T , f
−1(B)F ),

where f−1(B)T = f−1(BT ) and f−1(B)F = f−1(BF ).

Result 5.2. (See [5], Corollary 2.11) Let f : X → Y be a mapping and let A,B,C ∈
IS(X), (Aj)j∈J ⊂ IS(X) and D,E, F ∈ IS(Y ), (Dk)k∈K ⊂ IS(Y ). Then the
followings hold:

(1) if B ⊂ C, then f(B) ⊂ f(C) and if E ⊂ F , then f−1(E) ⊂ f−1(F ).
(2) A ⊂ f−1f(A)) and if f is injective, then A = f−1f(A)),
(3) f(f−1(D)) ⊂ D and if f is surjective, then f(f−1(D)) = D,
(4) f−1(

⋃
Dk) =

⋃
f−1(Dk), f−1(

⋂
Dk) =

⋂
f−1(Dk),

(5) f(
⋃
Aj) =

⋃
f(Aj), f(

⋂
Aj) ⊂

⋂
f(Aj),

(6) f(A) = φN if and only if A = φN and hence f(φN ) = φN , in particular if f
is surjective, then f(XN ) = YN ,

(7) f−1(YN ) = YN , f−1(φN ) = φ.
(8) if f is surjective, then f(A)c ⊂ f(Ac) and furthermore, if f is injective, then

f(A)c = f(Ac),
(9) f−1(Dc) = (f−1(D))c.

Definition 5.3. Let X,Y be non-empty sets. Then a mapping F : Y → IS(X) is
called an intuitionistic set-valued mapping.

Example 5.4. (1) Let X = {a, b, c}, Y = {1, 2} and let F : Y → ISX be given
by F (1) = ({a, b}, {c}) and F (2) = ({a}, {b}). Then F is an intuitionistic crisp
set-valued mapping. In particular, if A = ({a, b}, {c}), then

2A = {φI , ({a}, {c}), ({a}, {b, c}), ({b}, {c}), ({b}, {a, c}),
(φ, {c}), (φ, {b, c}), (φ, {a, c})}.

(2) (See Definition 5.1) Let X,Y be non-empty sets, let f : X → Y be a mapping.
We define two mappings f∗ : IS(X)→ IS(Y ) and f−1

∗ : 2YI → 2XI as follows:
16
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(i) for each A ∈ IS(X), f∗(A) = f(A) = (f(AT ), (f(AcF ))c),
(ii) for each B ∈ IS(Y ), f−1

∗ (B) = f−1(B) = (f−1(BT ), f−1(BF )).
Then f∗ and f−1

∗ are intuitionistic set-valued mappings.

Definition 5.5. Let X,Y be non-empty sets, let F,G : Y → IS(X) be intuition-
istic crisp set-valued mappings and let {Fα)α∈Γ, where Fα : Y → IS(X) is an
intuitionistic crisp set-valued mappings, for each α ∈ Γ.

(i) F ⊂ G if and only if F (y) ⊂ G(y), for each y ∈ Y ,
(ii) (F ∪G)(y) = F (y) ∪G(y), for each y ∈ Y ,
(iii) (F ∩G)(y) = F (y) ∩G(y), for each y ∈ Y ,
(iv) (

⋃
α∈Γ Fα)(y) =

⋃
α∈Γ Fα, for each y ∈ Y ,

(v) (
⋂
α∈Γ Fα)(y) =

⋂
α∈Γ Fα, for each y ∈ Y .

Proposition 5.6. Let F,G : Y → IS(X) be intuitionistic set-valued mappings and
let {Fα)α∈Γ, where Fα : Y → IS(X) is an intuitionistic set-valued mappings, for
each α ∈ Γ and let 2A∗ = {B ∈ IS(X) : B ⊂ A}, for each A ∈ IS(X).

(1) If F ⊂ G, then G−1(2A∗ ) ⊂ F−1(2A∗ ).
(2) (F ∪G)−1(2A∗ ) = F−1(2A∗ ) ∩G−1(2A∗ ),

in general, (
⋃
α∈Γ Fα)−1(2A∗ ) =

⋂
α∈Γ F

−1
α (2A∗ ).

(3) F−1(2A∗ ) ∪G−1(2A∗ ) ⊂ (F ∩G)−1(2A∗ ),
in general,

⋃
α∈Γ F

−1
α (2A∗ ) ⊂ (

⋂
α∈Γ Fα)−1(2A∗ ).

Proof. (1) Let y ∈ G−1(2A∗ ). Then G(y) ∈ 2A∗ . Thus G(y) ⊂ A. Since F ⊂ G,
F (y) ⊂ G(y). So F (y) ⊂ A, i.e., F (y) ∈ 2A∗ . Hence y ∈ F−1(2A∗ ). Therefore
G−1(2A) ⊂ F−1(2A∗ ).

(2) Let y ∈ (F∪G)−1(2A∗ ) = F−1(2A∗ )∩G−1(2A∗ ). Then (F∪G)(y) = F (y)∪G(y) ∈
2A∗ , i.e., F (y)∪G(y) = (F (y)T ∪G(y)T , F (y)F ∩G(y)F ) ⊂ A. Thus F (y)T ∪G(y)T ⊂
AT and F (y)F ∩ G(y)F ⊃ AF . So F (y)T ⊂ AT , G(y)T ⊂ AT and F (y)F ⊃ AF ,
G(y)F ⊃ AF , i.e., F (y) ⊂ A and G(y) ⊂ A, i.e., F (y) ∈ 2A∗ and G(y) ∈ 2A∗ . Hence
y ∈ F−1(2A∗ ) and y ∈ G−1(2A∗ ), i.e., y ∈ F−1(2A∗ )∩G−1(2A∗ ). The converse inclusion
is proved similarly.

The proof of the second part is similar.
(3) Let y ∈ F−1(2A∗ ) ∪ G−1(2A∗ ). Then y ∈ F−1(2A∗ ) or y ∈ G−1(2A∗ ), i.e.,

F (y) ⊂ A or G(y) ⊂ A. Then F (y) ∩ G(y) ⊂ A. Thus (F ∩ G)(y) ⊂ A, i.e.,
(F ∩G)(y) ∈ 2A∗ . So y ∈ (F ∩G)−1(2A∗ ). Hence the result holds.

The proof of the second part is similar. �

Theorem 5.7. Let (X, τ) be an ITS and let (Y, σ) be an ordinary topological space
and let F : (Y, σ) → 2(X,τ) be an intuitionistic set-valued mapping. Then F is
continuous if and only if the set

(5.5.1) F−1(2A) = {y ∈ Y : F (y) ∈ 2A} = {y ∈ Y : F (y) ⊂ A}

is open in Y , whenever A ∈ τ , and is closed in Y , whenever A ∈ IC(X).
Equivalently, for each A ∈ IC(X) [resp. A ∈ τ ], the set

(5.5.2) Y − F−1(Ac) = {y ∈ Y : F (y) ∩A 6= φI}

is open [resp. closed] in Y .
17
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More precisely, F is continuous at y ∈ Y if and only if both implication hold:

(5.5.3) y ∈ F−1(2G)⇒ y ∈ int(F−1(2G)), whenever G ∈ τ
and

(5.5.4) y ∈ cl(F−1(2K))⇒ y ∈ F−1(2K), whenever K ∈ IC(X).

Proof. Suppose F is continuous at y0 ∈ Y . Let G be open in 2(X,τ) and suppose
y ∈ F−1(G). Then F (y) ∈ G. Since G is open in 2(X,τ), G is a neighbourhood of
F (y0). Thus there exists U ∈ τv such that F (y0) ∈ F (U) ⊂ G. So y0 ∈ U ⊂ F−1(G).
Hence y0 ∈ int(F−1(G)).

Now let K be closed in 2(X,τ) and suppose y0 ∈ cl(F−1(K)). By result 5.2 (9),

cl(F−1(K)) = cl(F−1((Kc)c) = cl(F−1(Kc))c = (int(F−1(Kc)))c.

Then y0 ∈ (int(F−1(Kc)))c. Thus y0 /∈ int(F−1(Kc)) = int((F−1(K))c). Since
int((F−1(K)c) ⊂ (F−1(K))c, y0 /∈ (F−1(K))c. So y0 ∈ F−1(K). Hence the follow-
ing implications:

(5.5.5) y0 ∈ F−1(G)⇒ y0 ∈ int(F−1(G)), whenever G is open in 2(X,τ)

and

(5.5.6) y0 ∈ cl(F−1(K))⇒ y0 ∈ F−1(K), whenever K is closed in 2(X,τ).

Therefore by replacing G by 2G for G ∈ τ , and K by 2K for K ∈ IC(X), we can
obtain two implications (5.5.3) and (5.5.4).

Conversely, suppose the implication (5.5.5) holds. Then we can easily see that
F is continuous at y0 ∈ Y . If the implication (5.5.6) holds, then we can easily see
that F is continuous at y0 ∈ Y . Moreover, since the range of G can be restricted
to a subbase of 2(X,τ), we may assume that G = 2A or G = (2A

c

)c with A ∈ τ . In
the first case, (5.5.5) follows directly from (5.5.3). In the second case, (5.5.6) can be
deduced from (5.5.4). �

Definition 5.8 ([6]). Let X,Y be an ITSs. Then a mapping f : X → Y is said to
be continuous, if f−1(V ) ∈ IO(X), for each V ∈ IO(Y ).

Definition 5.9. Let X,Y be ITSs. Then a mapping f : X → Y is said to be:
(i) open [6], if f(A) ∈ IO(Y ), for each A ∈ IO(X),
(ii) closed [18], if f(F ) ∈ IC(Y ), for each F ∈ IC(X).

Theorem 5.10. Let (X, τ), (Y, σ) be T1(iii)-spaces such that τ ⊂ IS∗(X) and σ ⊂
IS∗(Y ), and let f : X → Y be intuitionistic continuous. Then the mapping f−1

∗ :
2(Y,σ) → 2(X,τ) is continuous if and only if f is both intuitionistic open and closed.

Proof. Suppose f−1
∗ : 2YI → 2XI is continuous and let G ∈ τ . Since X is a T1(iii)-

space, by Proposition 4.2 (3), 2G is open in 2(X,τ). Then by the hypothesis and
(5.5.1), (f−1

∗ )−1(2G) = (f−1)−1(2G) = f(2G) is open in 2(Y,σ). Thus

f(2G) = {f(A) ∈ IS(Y ) : A ∈ 2G} = {f(A) ∈ IS(Y ) : A ⊂ G} = 2f(G)

is open in 2(Y,σ). So by Theorem 3.21, f(G) ∈ σ, i.e., f is intuitionistic open.
Now let F ∈ IC(X). Then by Corollary 3.20, 2F is closed in 2(X,τ). Since f−1

∗ is
continuous, (f−1

∗ )−1(2F ) = (f−1)−1(2F ) = f(2F ) = 2f(F ) is closed in 2(Y,σ). Thus
18
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by Theorem 3.19, f(F ) ∈ IC(Y ). So f is intuitionistic closed. Hence f is both
intuitionistic closed. Therefore f is both intuitionistic open and closed.

The converse can be easily proved. �

The following is the immediate result of Proposition 5.6 (2) and Theorem 5.7.

Proposition 5.11. Let (X, τ) be an ITS and (Y, σ) be an ordinary topological space
and let F,G : (Y, σ)→ 2(X,τ) be intuitionistic set-valued mappings. If F and G are
continuous, then F ∪G is continuous.

6. Conclusions

We introduced three types intuitionistic hyperspaces and obtained their some
properties. In the future, we expect that we will find some relationships between
separation axioms T0, T1, T2, T3 and T4 in ITSs and intuitionistic hyperspaces.
Also we will deal with separability and axioms of countability between an ITS and
its hyperspace.
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