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1. INTRODUCTION

I. 1983, Atanassove [1] introdued the concept of intuitionstic fuzzy sets as a gen-
eralization of a fuzzy set proposed by Zadeh [24]. In 1996, Coker [5] introduced the
concept of an intuitionistic set (called an intuitionistic crisp set by Salama et al.[21])
as the generalzation of an ordinary set and the specialization of an intuitionistic
fuzzy set. After that time, many researchers [3, 4, 6, 7, 8, 20, 18, 22, 23] applied
the notion to topology. Recently, Kim et al. [10] studied the category ISet com-
posed of intuitionistic sets and morphisms between them in the sense of a topological
universe. Also, Kim et al. [11] studied some additional properties and give some
examples related to intuitionistic closures and intuitionistic interiors in intuitionistic
topological spaces. Lee et al. [15] investigate limit points and nets in an intuition-
istic topological space. Also they [16] introduced some types of continuities, open
and closed mappings, and intuitionistic subspaces. Moreover, they [17] investigated
intuitionistic relation. In particular, Bavithra et al. [2] studied intuitionistic Fell
topological spaces.
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In this paper, first of all, we list some concepts related to intuitionistic sets and
some results obtained by [5, 6, 7, 10, 11]. Second, for an ITS (X, 7), we introduce
an intuitionistic hyperspace (207 7,) [resp. (20570 77 ,) and (2571v) 77y.,)] of
T-type [resp. 7r-type and 77y -type]. And we give some examples of each hyperspace
and obtain some properties of the hyperspace (2(X’T),Tv). Third, we find some
relationships between openess in an ITS (X, 7) and its hyperspace 2(%.7) " Finally,
we introduce an intuitionistic set-valued mapping and study its some continuities.

2. PRELIMINARIES

In this section, we list some concepts related to intuitionistic sets and some results
obtained by [5, 6, 7, 10, 11].

Definition 2.1 ([5]). Let X be a non-empty set. Then A is called an intuitionistic
set (in short, IS) of X, if it is an object having the form

A= (AT7AF)7

such that Ar N Ap = ¢, where Ap [resp. Ap] is called the set of members [resp.
nonmembers] of A.

In fact, Ar [resp. Ap] is a subset of X agreeing or approving [resp. refusing or
opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by
@1 [resp. X], is defined by ¢ = (¢, X) [resp. X1 = (X, ¢)].

In general, Ap U Ap # X.

We will denote the set of all ISs of X as I5(X).

Definition 2.2 ([5]). Let A, B € I5(X) and let (A4;);es C IS(X).
(i) We say that A is contained in B, denoted by A C B, if Ay C By and Ap D Bp.
(ii) We say that A equals to B, denoted by A = B, if A C B and B C A.
(iii) The complement of A denoted by A°, is an IS of X defined as:

A= (Ap, Ar).
(iv) The union of A and B, denoted by AU B, is an IS of X defined as:
AUB= (AT UBr,Afp ﬁBF).
(v) The union of (A;);es, denoted by J;c; A; (in short, (JA;), is an IS of X
defined as:
U4 =WUAir () A4r).
jeJ JjeJ JjeJ
(vi) The intersection of A and B, denoted by AN B, is an IS of X defined as:
ANB= (AT NBr,Ar UBF).
(vii) The intersection of (A;) e, denoted by (;c; A; (in short, (A4;), is an IS

of X defined as:
4= () 4. 450
JjeJ jeJ jeJ
(viii) A— B= AN B°.
(iX) []A = (AT,ATC), <>A= (AFC7AF).
2
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Result 2.3 ([10], Proposition 3.6). Let A,B,C € IS(X). Then
(1) (Idempotent laws): AUA=A, ANA=A4,
(2) (Commutative laws): AUB=BUA, ANB=BNA,
(3) (Associative laws): AU(BUC)=(AUB)UC, AN(BNC)=(AnB)nC,
(4) (Distributive laws): AU(BNC)=(AUB)N(AUC),
AN(BUC)=(ANB)U(ANC),

(5) (Absorption laws): AU(ANB)=A, AN(AUB) = A4,

(6) (DeMorgan’s laws): (AU B)® = A°N B¢, (AN B)¢ = A°U B,
(7) (A%)° = A,

(8) (8a) AU¢r = A, AN = ¢r,

(8b) AUX =X, AnNX;=A4,
(80) Xfc:(blf ¢IC = Xi,
(8d) in general, AU A° # X1, AN A° # ¢r.

We will denote the family of all ISs A in X such that Ar U Ap = X as I5.(X),
i.e.,
I1S.(X)={Ae€lIS(X): ArUApr = X}.
In this case, it is obvious that A N A = ¢y and AU A° = X and thus
(IS*(X)7C5¢17XI)

is a Boolean algebra. In fact, there is a one-to-one correspondence between P(X) and
15,.(X), where P(X) denotes the power set of X. Moreover, for any A, B € I5,.(X),
A=Ar=[]A=<>Aand AUB,ANB,A— B € I5,(X).

Definition 2.4 ([5]). Let X be a non-empty set, a € X and let A € IS(X).

(i) The form ({a},{a}®) [resp. (¢,{a}°)]is called an intuitionistic point [resp.
vanishing point] of X and denoted by a; [resp. ajv].

(ii) We say that a; [resp. ary] is contained in A, denoted by a; € A [resp.
ary € A],if a € Ar [resp. a ¢ AF].

We will denote the set of all intuitionistic points or intuitionistic vanishing points
in X as IP(X).

Definition 2.5 ([6]). Let X be a non-empty set and let 7 C I.5(X). Then 7 is called
an intuitionistic topology (in short IT) on X, if it satisfies the following axioms:

(i) ¢r. Xr €,

(i) ANB e, for any A, B €T,

(iti) U;e s Aj € 7, for each (4;)jes C 7.

In this case, the pair (X, 7) is called an intuitionistic topological space (in short,
ITS) and each member O of 7 is called an intuitionistic open set (in short, I0S) in
X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if F° € 7.

It is obvious that {¢, X1} is the smallest IT on X and will be called the intuition-
istic indiscreet topology and denoted by 77. Also IS(X) is the greatest IT on X
and will be called the intuitionistic discreet topology and denoted by 77,;. The pair
(X,71,0) [resp. (X,7r,1)] will be called the intuitionistic indiscreet [resp. discreet]
space.
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We will denote the set of all ITs on X as IT(X). For an ITS X, we will denote
the set of all IOSs [resp. ICSs] on X as TO(X) [resp. IC(X)].

Example 2.6. (1) ([6], Example 3.2) For any ordinary topological space (X, 7,), let
T={(A,A4°) : A€ 1,}. Then clearly, (X, 7) is an ITS.

(2) ([6], Example 3.4) Let (X, 7) be an ordinary topological space such that 7 is
not indiscrete, where 7 = {¢, X} U{G; : j € J}. Then there exist two ITs on X as
follows: 7' = {¢7, X1} U{(G},¢) : j € J} and 7° = {¢1, X1} U{(,GS) : j € J}.

(3) ([11], Example 3.2 (4)) Let X be aset and let A € IS(X). Then A is said to be
finite, if A is finite. Consider the family 7 = {U € IS(X) : U = ¢ or U€ is finite}.
Then we can easily show that 7 is an IT on X.

In this case, 7 will be called an intuitionistic cofinite topology on X and denoted
by ICof(X).

(4) ([11], Example 3.2 (5)) Let X be a set and let A € IS(X). Then A is said
to be countable, if Ar is countable. Consider the family 7 = {U € IS(X) : U =
¢y or U€ is countable}. Then we can easily show that 7 is an IT on X.

In this case, 7 will be called an intuitionistic cocountable topology on X and
denoted by ICoc(X).

Result 2.7 ([6], Proposition 3.5). Let (X, 7) be an ITS. Then the following two ITs
on X can be defined by:

01 ={[lU:U€ethn={<>U:UE€T}.

Furthermore, the following two ordinary topologies on X can be defined by (See

[31):
nn={Upr:Uert} nn={Up:U €7}

Remark 2.8 ([11], Remark 3.4). (1) Let (X, 7) be an ITS such that 7 C I5.(X).

Then it is obvious that 7 = 79,1 = 79,2.

(2) For an IT 7 on a set X, we will denote two ITs 79,1 and 7 2 defined in Result
2.7 a8 101 = [ |7 and 19,2 =< > 7, respectively.

(3) For an IT 7 on a set X, let 71 and 75 be ordinary topologies on X defined in
Result 2.7. Then (X, 71, 72) is a bitopological space by Kelly [9] (Also see Proposition
3.1 1in [1]).

Definition 2.9 ([6]). Let (X, 7) be an ITS.

(i) A subfamily § of 7 is called an intuitionistic base (in short, IB) for 7, if for
each A € 7, A = ¢ or there exists ﬁ/ C B such that A = Uﬁ/.

(ii) A subfamily o of 7 is called an intuitionistic subbase (in short, ISB) for 7, if
the family 8 = {(o : ¢ is a finite subset of ¢} is a base for .

In this case, the IT 7 is said to be generated by o. In fact, 7 = {¢;} U{US :
B C B}

Definition 2.10 ([7]). Let X be an ITS, p € X and let N € IS(X). Then
(i) N is called a neighborhood of py, if there exists an IOS G in X such that

pr € GCN, ie., p€ Gr C Ny and G D Np,
(ii) N is called a neighborhood of pyy, if there exists an IOS G in X such that

prv € GCN, ie., Gr C Nr andp%GFDNF.
4
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We will denote the set of all neighborhoods of p; [resp. prv] by N(pr) [resp.
N(prv)].

Result 2.11 ([7], Proposition 3.4). Let (X,7) be an ITS. We define the families
71 ={G:G € N(pr), for each p; € G}
and
v = {G : G € N(prv), for each p;y € G}.
Then 17, 7rv € IT(X).
In fact, from Remark 4.5 in [11], we can see that for an IT 7 on a set X and each
Uer,
1 =7U{({Ur,Sv): Su CUp}U{(,5):S C X}
and
TV = TU{(SU,UF) :Sy DUr and Sy NUp = (]5}
Result 2.12 ([7], Proposition 3.5). Let (X, 7) be an ITS. Then 7 C 71 and T C Tyv.

Result 2.13 ([11], Corollary 4.8). Let (X,7) be an ITS and let IC; [resp. IC;,
and IC,,, ] be the set of all ICSs w.r.t. 7[resp. 71 and 11y ]. Then

IC.(X) C IC;,(X) and IC(X) C IC,,,, (X).
Result 2.14 ([7], Proposition 3.9). Let (X, 7) be an ITS. Then 7 = 11 N T1v.

Result 2.15 ([11], Corollary 4.13). Let (X,7) be an ITS and let IC;]. Then
IC,(X)=1IC,(X)NIC,,,(X).

Definition 2.16 ([6]). Let (X,7) be an ITS and let A € IS(X).
(i) The intuitionistic closure of A w.r.t. 7, denoted by Icl(A), is an IS of X
defined as:
Icl(A)=({K:K°crand AC K}.
(ii) The intuitionistic interior of A w.r.t. 7, denoted by Iint(A), is an IS of X
defined as:
Iint(A) = {G: G € 7 and G C A}.

Result 2.17 ([6], Proposition 3.15). Let (X, 7) be an ITS and let A € IS(X). Then
Iint(A°) = (Icl(A))¢ and Icl(A°) = (Iint(A))°.

3. INTUITIONISTIC HYPERSPACES

In this section, for an ITS (X,7), we introduce an intuitionistic hyperspace
(257 1) [resp. (20570 77,) and (2C571v) 71y,)] of T-type [resp. Tr-type and
Trv-type]. And we give some examples of each hyperspace and obtain some proper-
ties of the hyperspace (257, 7,).

Notation 3.1. Let (X, 7) be an ITS. Then
(1) 207 = {E € IS(X) : g1 # F € IC,(X)},
20X m) = (E cIS(X):¢; #E € IC,,(X)},
2Xmv) = IE € IS(X): ¢y # E € IC,,, (X)},
Saxn o (X) ={E € 2(X7) ;. Er has at most n elements},
)

(2)
(3)
(4)
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(5) Foxn (X) = {F € 2057 : Erp is finite},

(6) Ryxor) (X) = {F € 257) . E is compact},

(7) Cyx.r) (X) = {E € 257 : E is connected},

(8) €yixin k(X)) = Ryxir) (X) N E(g0xm) (X).

The following is the immediate result of Notation 3.1, and Results 2.12 and 2.14.

Proposition 3.2. Let (X,7) be an ITS. Then
2(57) ¢ 90T and 2067) ¢ o(Xmiv),
Moreover, 2057 = 2(X;m1)  9(Xom1v),
Example 3.3. Let X = {a,b,c} and let 7 be the IT on X given by:
7 ={¢1, X1, A1, Az, A3, As},

where A; = ({a}’ {b})7 Ay = ({b}7 {C})7 Az = ({a’b}’(b)a Ay = (¢> {b7 C})
Then TT =T U {A57A6,A7,A8,A9} and TT =T U {Alo,All,Alg},
where A5 = (9, {a})’ A = (9, {b})7 A7 = (9, {C})7 As = (¢, {CL, b}),
Ao = (6 c}), A= ({a,ch, (1), An = ({001 {c}), Ara = ({a}, {b,c}).
Thus ICT(X) = {¢17X17F17F27F33F4}7
IC-,—I(X) = ICT(X) U {F57F6,F7,F8,F9}
and
1C5,, (X)=1C(X)U {Fm,Fll,Fm},
where Fy = ({b},{a}), F> = ({c},{b}), F5 = (¢,{a,b}), Fi=({b,c},9),
Fy = ({a}7¢)7 Fe = ({b}v¢)v Fr = ({C}v¢)a Fs = ({a,b},¢),
Fy = ({a’vc}v(b)a Fyp = ({b},{a, C}), Fyy = ({0}7{0,,()}), Fip = ({ba C}v{a})'
So 27 ={X; I, F, F3, Fy},
2(X’TI) = Q(X’T) @] {F‘5,IFG,P‘I7,F‘87}’—‘g}7
28 mv) = 2(X1) U {Fyg, Fiy, Fia}.
In fact, we can confirm that Proposition 3.2 holds.

Proposition 3.4. Let (X,7) be an ITS and let
ﬁr,v = {< U1,Us,...,Uy >rwt Uj € 7 for j=1 ---an}a

Briw ={<U,Us,...;Up >, ,: Ujerfor j=1,..,n},

BTIVﬂ) = {< UlaU27---aUn >riy vt Uj € 7 for 7 =1, ...,n},

where < Uy,Us,...,Up >7,
={Ee2¥:Ec/_,U; and ENU; # ¢p for j =1,...,n},
<UL Us, o Up >4, 0
={EBe2&™M Ec/_,Ujand ENU; # ¢; for j =1,...,n},
<U1,Uzy .. Uy >1p0 0
={Ee2X8m):EcJ/_U; and ENU; # ¢y for j =1,...,n},
Then there exists a unique topology T, [resp. T1., and Try.] on 2057) [resp. 2(X.71)
and 2X57V) [ such that B, [resp. Bryw and By, o] is a base for 7, [resp. Tr., and

TIV,’U/'
6
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Proof. Clearly, X; € 7 and < Xj >;,€ Brp. Then |JBr» =< X1 >;0= 2(X.7),

Let < Uy,Us, ..Uy >70,< Vi, Va, ..., Viy > 4,€ Brp and let U = J_, U;,V =
U;.n:l Vii Let B,y =< Ui NV, 0NV, U, NV, UNV,UNV,, ..., UNVy >r 0.
Let E € Bry. Then E C UL, [(U; nV)]UUL[(UNV))], ENU; NV # ¢r, for
i=1,..,nand ENUNYV; # ¢r, for j =1,...,m. Thus

FeB,y=<U,Us, ..U, >, N<V, Vo, .,V >0

So Br,, generates the unique topology 7, on 2(%.7) such that Br v is a base for 7,.
Similarly, we can show that ;, , and f;,, ., generate the unique topologies 7, ,

and 7., , on 2(%.71) and 2(%:71v) guch that Br;,» and B, . are bases for 7., , and

Trv v, Tespectively. O

In the above Proposition, the topology 7, [resp. 77, and 77v,] on 2(X7) [resp.
2(%71) and 2(571v)] induced by Brv [resp. B0 and B, ] will be called the in-
tuitionistic Vietories topology (in short, IVT) on 2(%7) [resp. 2(571) and 2(X:7v)],
The pair (257 7,) [resp. (2570 77,) and (20571v) 77y,,)] will be called an intu-
itionistic hyperspace of T-type [resp. 77-type and 77y -type].

The following is the immediate result of Proposition 3.4, and Results 2.12 and
2.14.

Proposition 3.5. Let (X, 7) be an ITS. Then 7, C 71 and 7, C Try,,. Moreover,
Tv =TIw N TIV,v-

Example 3.6. Let (X, 7) be the ITS in Example 3.3. Then we can easily check the
followings:
Ty = {¢7 {Fl}v {F3}v {Flv F3}a {F27 F47Xl}v {F1>F27F4a Xl}a {FQ,FSa F47XI}7 Q(X’T)}v
Tro = {¢, {F1} {Fs ) {AFs {5, B} { By, s ) { B, Fo b {5, B ) {55, Fal
{F\,Fs,Fs},{F\, F5, Fs},{F1, F5, Fs}, {Fs, Fs, Fs }, { F1, F5, Fs, Fs},
{F\, Fs, F5, Fs},{F1, Fs, F5, Fs }, {F5, F5, Fg, Fs }, {F1, F3, Fs, Fg, F3},
{FQaF47XI}7{FlaF27F47XI}a{F27F37F47X1}72(X77)}a
{F\,Fy, Fs, Fs, F7, Fs, Fy, X1}, {F1, F3, Fy, F5, Fg, F7, Fs, Fo, X1},
{F\,Fy, Fy, Fy, Fs, Fy, Fy, Fy, X1},2(X70)}
TV = {d)v {Fl}a {F2}v {FB}v {Flo}’ {F17F2}7 {F13F3}7 {FlaFlo}a {F27F3}a {F27F10}7
{Fs, Fio}, {F1, F, F3}, {F\, F3, Fio}, {Fs, F3, Fio}, { F1, Fa, F3, Fio},
{FQa F43XI}7 {Fla F27 F47X1}ﬂ {F27 F37F47X1}a 2(X’T)}a
{F1, Py, Fy, Fio, Fi2, X1}, {F1, Fo, F>, F3, Fi1, Fia, X1}, 2007v) )
In fact, we can confirm that Proposition 3.5 holds.

Proposition 3.7. Let (X,7) be an ITS. Then the following two subfamilies (-,
and B, ., of 2(X7) respectively can be defined by:

570,1 = {< [ ]U17' o 7[ ]UTL >T0,1: Uj € 7 for ] = 1, an}
and

Broo ={<< >Us,--- , < >Up >p s Ujerfor j=1,...,n},
where < [ U1, ,[|Upn >y,

={[1E €270 [1E C Ui, [ U, [1EN[U; # ¢1, for j=1,...,m,
7
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Ecer}
and
<< > Ui, < > Uy >0,
={<>Ee2¥m) .« >EcUl, <>Uj;, <>EN<>U;# ¢,
forj=1,...,n,Ec €T}
Furthermore, 3, , and Br,, generate unique topologies (7o,1), and (Toz2), on
2(X,7')‘

In this case, the pair (2057 (79.1),) [resp. (2057 (79.2),)] will be called an
intuitionistic hyperspace of 79 1-type [resp. 7o 2-type] and simply, will be denoted
2(Xm0.1) [resp. 2(X70.2)],

Proof. The proofs are easy. O

Example 3.8. Let (X, 7) be the ITS in Example 3.3. Then
[ ]Al = ({a}7 {b7 C})7 [ ]AZ = ({b}7 {a'7 C}), [ ]Ad = ({CL?b}? {C})

and

- <> A; = ({a,c}, {b}), <> Az = ({a,b},{c}), < > A3 = ({a},{b,c}).
ICy (X)) = {61, X1, [ 1F1, [ | Fo, [ 14}

and

IOTO,Q(X) = {¢I:XI;< >, <> Fy, < > Fg},

where [ JFy = ({b}, {a,c}), [ [F2 = ({c}, {a, b}), [ ]Fa = ({b, ¢}, {a})

and
<> F1 = ({b,c} {a}), <> F = ({a,c}, {b}), <> Fy = ({c} . {a.b}).
So  (10.1)e = {6, {X1}, {[|F1,[ | Fs, X1}, 205701}
and
(10,2)0 = {0, {< > F2},{< > F5, < > F3},{< > F», X1},
{< > Fi,< > F27X1}7 {< > Iy, < > F3,X[},2(X77012}.

Proposition 3.9. Let (X, 1) be an ITS. Then the following two ordinary subfamilies
g Y
By, and B, of 257) | respectively can be defined by:
Br, = {< U, - Uy > Uj €7 for j =1, ,n}
and
Br, ={<Ufp, Ul p>r:Uj €7 for j=1,...,n},
where < Ul,T7 BN Un,T >
={Ee2&m):EcUl_Ujr and ENU;r # ¢ for j =1,..,n}
and
< Ulc,Fv T vUﬁ,F >1y
={EBe2&m) EcUl_ Uy and ENUfp # ¢ for j =1,...,n}.
Furthermore, B;, and f;, generate unique ordinary Vietories topologies 11 , and
Tow ON 2X,

In this case, the pair (257 7 ,)) [resp. (20X7), 75 ,))] will be called an ordi-
nary hyperspace of Ti-type [resp. Ta-type| and simply, will be denoted 2(X,m1) [resp.
8
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Z(X’TQ)}, and the triple (2(X’T), T1,0, T2,n) Will be called an ordinary bihyperspace in-
duced by (X, 7).

Proof. The proofs are easy. a

Example 3.10. Let X = {a,b,c} and let 7 be the IT on X given by:
T = {¢I7 XI7 A17 AQa A3) A47 A5}7

where A; = ({a7b}7 {C})a Ay = ({bac}? {a’})> Az = ({a’}'> {C})
Ay = ({b}7 {CL,C}), As = (¢> {avc})'

Then
1 = {¢7 X, {a}a {b}a {av b}a {ba C}}
and
T2 = {¢7 X, {b}a {a) b}) {b7 C}}
Thus 71 = {d)v X, {a}’ {C}v {b’ C}v {av C}} and 75 = {d)v X, {a}v {C}’ {av C}}

where 7{ and 7§ denote the families of closed sets in (X, 71) and (X, 72), respectively.

Sod mo = {6}, {{a}}, {{e}} {{b, e}} . {{a, c}}. {{b, ¢} {a, ¢} }, 205}

0 = {{o}, {{a}}. {{c}}, {{a, c}}, 20501

Proposition 3.11. Let X be an ITS, A,B € I5(X) and let (Ay)aer C IS(X).
Then 2478 = 24028 and generally, 2Naer Ao = Naer Aas
where 24 = {E € 2057 . B C A}.

Proof. E € 2478 & E € 2(X57) such that EC ANB
& F €257 such that E C Aand E C B
s FEe2tand E €28 ie., Ec24n2B.
On the other hand,
E € 2Naer 4o o F € 2%1 such that E C (e Aa
& E € 2% such that E C A,, for each o € T
& FEe2X foreacha €T
& E € Nper 2.

Definition 3.12 ([3]). An ITS X is said to be a:
(i) T1(i)-space, if for any « # y € X, there exist U,V € IO(X) such that

xr €U,yr ¢ U and z; ¢ V,y; €'V,

(i) Ty (4i)-space, if for any x # y € X, there exist U,V € IO(X) such that

zrv € Uyyrv ¢ U and v € V,yry €V,
(iil) Ty (vi1)-space, if for any « # y € X, there exist U,V € IO(X) such that
zr €U Cyfand yr €V C 7,

(iv) Ty (iv)-space, if for any = # y € X, there exist U,V € IO(X) such that
xry € U Cyfy and yry € V C afy,

(v) T1(v)-space, if for any z # y € X, there exist U,V € IO(X) such that

yr ¢ U and 25 ¢V,
9
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(vi) T (vi)-space, if for any = # y € X, there exist U,V € IO(X) such that

yrv ¢ U and zy ¢V,
(vii) Ty (vii)-space, if for each x € X, 2y € IC(X),
(viii) Ty (viii)-space, if for each z € X, zyy € IC(X).

Result 3.13 ([3], Theorem 3.2). Let (X, 7) be an ITS. Then the following implica-
tions are true:

T, (U) - T, (’UZ)
Ty (1) Ty (i) + T4 (47) Ty (7)
T (vii)= T, (i) Ty (iv)

Result 3.14 ([3], Proposition 3.11). Let (X, 7) be an ITS. Then
(1) (X, 7) is T1(3) if and only if (X, 1) is T1,
(2) (X,7) is T1(i7) if and only if (X, 72) is Ty,
(3) (X, 7) is T1(3) if and only if (X, 701) is T1(7),
(4) (X,7) is T1(i7) if and only if (X,70,2) s T1(i4).

Proposition 3.15. Let (X, 7) be an ITS such that T C 15,.(X). Then
(1) (X,7) is Ty (vii) if and only if (X, 7101) is T1(vii),
(2) (X,7) is Ty (viii) if and only if (X, 70,1) is T1(viii).

Proof. For any A € IS,(X), we can easily see that [ ]JA° = ([ ]A)°. Then from this
fact and Definition 2.16 (i), we can prove that (1) and (2) hold. O

Proposition 3.16. Let (X, 7) be an ITS.

(1) If (X, 1) is Ty(vit), then (X, 11) is Ty, i.e., {x} is closed in (X, 11), for each
reX.

(2) If (X, 1) is T1(viii), then (X, 72) is Ty, i.e., {x} is closed in (X, 12), for each
recX.

Proof. (1) Suppose (X, 7) is Tq(vii) and let © # y € X. Then clearly, x5, y; €
IC(X). Thus z%, y§ € 7. Moreover, z; ¢ =, x; € y{ and y; € x5, yr ¢ y5. So
(X,7) is T1(7). Hence by Result 3.14 (1), (X, 1) is Ty.

(2) The proof is similar. O

Theorem 3.17. Let X be Ty(iii) [resp. Ti(viii)]. Then A C B if and only if
24 © 28 and thus A = B if and only if 24 = 25.

Proof. (=): It is obvious.

(«<): Suppose 24 € 28 and let p; € A. Since X is Ty (iii), by Result 3.13, it is
T1(vii). Then p; € IC(X) and p; C A. Thus p; € 24. By the hypothesis, p; € 25,
i.e., pr C B. So p;r € B. Hence A C B.

Now let pyy € A. Since X is Ty (viii), by Definition 3.12, pry € IC(X). Then
pry € 24. Thus by the hypothesis, p; € 25, i.e., p; € B. So p; € B. Hence A C B.
This completes the proof. O

10
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Proposition 3.18. Let (X, 7) be an ITS. Then
@24)e =2 — 24 =(Fe2XT ENA £ ¢}

Proof. Ec (24 ) o E¢2Y @« E¢ A< Er ¢ Ap or Ep % Ap
@ETOAT¢AFOAT:¢OI‘EFUAT$ATUAT:AT
o ENA+ . 0

Theorem 3.19. Let (X, 7) be a Ty (iit)-space and let A € 1S(X). Then
2Icl(A) _ Cl(QA),
where cl(24) denotes the closure of 24 in 2057,

Proof. Tt is clear that A C Icl(A). Then 24 C 274,

Let E € 21¢M) je., E C Ic(A). Let < Uy,...,U, >, containing E. Then
E C U?Zl Uj and ENU; # ¢r, for j =0,1,2,...,n. Since E C Icl(A), there exists
pjr € ANU;, for 5 =1,2,...,n. Let F =|{p1,1, -, Pn,1}- Since (X, 7) is a T4 (¢4i)-
space, by Definition 3.12 and Result 3.13, p;; € IC(X), for j = 1,2,...,n. Thus
F cIC(X). So F €24n < Uy,...U, >, . Hence E € cl(24), i.e., 24 C 2714 ¢
cl(24). Therefore 27¢1A) = ¢(24). O

The following is the immediate result of Theorem 3.19.

Corollary 3.20. Let (X,7) be a Ty(iii)-space and let A € IC(X). Then 24 is
closed in 2057,

Proof. Since A € IC(X), Icl(A) = A. Then by 3.19, cl(24) = 274 = 24 Thus
24 is closed in 2(X7), O

Theorem 3.21. Let (X, 1) be a Ty (iii)-space and let A € IS(X). Then
where int(24) denotes the interior of 24 in 2057,

Proof. Tt is clear that Iint(A) C A. Then 27744) c 24,

Assume that E ¢ 2774 A) Then E ¢ Tint(A). Thus there exists a € X such
that a; € FE but a; ¢ Iint(A). Let E €< Uy,...,U, >;,. Then E C U;L:1 U, and
EnNU; # ¢r, for j =1,2,...,n. Since a; € U; € 7, for some j and a; ¢ Iint(A),
U; ¢ Iint(A). Thus there exists b; € X such that b;; € U; but b;; ¢ A. Since
(X,7) is a Ty(4ii)-space, b1 € IC(X). Let F = EUb; . Then clearly, F ¢ A.
Furthermore, F C U?:l Uj and FNU; # ¢p, for j = 1,2,...,n. Thus F €<
Ui, ..., Uy >, So each neighbourhood of E in 2(%7) contains an F such that F' ¢ A,
ie., F € (24)° Hence F € cl((24)°), ie., F ¢ int(24), i.e., int(24) c 20mtA),
Therefore 274 A) = int(24). O

The following is the immediate result of Result 2.17 and Theorems 3.21.

Corollary 3.22. Let (X,7) be a Ty (iii)-space and let A € IC(X). Then (247)¢ is
closed in 257,
11
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Proof. cl((249)¢) = [int(247))°
= (27"tA%)e [By Theorem 3.21]
E(

2(1el(A)"]¢ By Result 2.17]
Then (247)¢ is closed in 2(X7). O

A%)e, [Since A € IC(X))
Theorem 3.23. Let (X,7) be Ty(4ii) [resp. Ti(viii)].
(1) < Ui, Uy >C< Vi,+++, Vi, > if and only if | J!—, U; C Um V; and there
is U; such that U; C Vj, for each V
(2) (< Uy,---,U, >) =< [cl(Ul),~~ JIcl(Uy,) >, where 7 C 15,(X).

Proof. (1) b =< Uy,---,U, > and Y =< Vp,---,V,, >. Suppose 4 C U and
assume that U, Ui ¢ UL, Vj, say @nq1r € Uiy Us but 2oy & UjL, Ve Let
x; g €U, foreachi=1,--- ;nandlet E=U{z;;:i=1,--- ,n+1}. Since (X, 7) is
T4 (24), by Result 3.13, x; ; € IC(X), for each i =1,--- ,n+ 1. Then E € IC(X).
Thus E € 4 — 9. This contradicts the fact that t C . So Ui, Ui € U~ V,

Now assume that there is V; such that U; — V; # ¢, for all i = 1,--- ,n and let
x;; €U; —V;. Let F =U{z;r:¢=1,---,n}. Then by 3.13, z;; € IC(X), for
eachi=1,--- ,n. Thus F € IC(X). So F € 4 — 0. This contradicts the fact that
i C . Hence there is U; such that U; C Vj, for each V.

Suppose 4 C U and assume that |J;_, U; ¢ U;nzl V;, say @py1,0v € Ui, U; but
Tpi1,1v ¢ U;’;l V;. Let x; v € Uj, for each i = 1,--- ,n and let B = U{z; ;v :i=
1,---,n+1}. Since (X, 7) is Ty(viii), by Definition 3.12, z; ;v € IC(X), for each
i=1,---,n+1. Then E € IC(X). Thus E € {—. This contradicts the fact that
UC Y. So UL, Ui € UjL, Vj. Now assume that there is Vj such that U; — V; # ¢,
foralli=1,---,n and let 2; ;v € U; = V;. Let F = U{x; v :i=1,--- ,n}. Then
by Definition 3.12, x; ;v € IC(X), for each ¢ = 1,--- ,n. Thus F € IC(X). So
F € {4 — 0. This contradicts the fact that 4 C 0. Hence there is U; such that
U; C Vj, for each Vj.

Conversely, suppose the necessary conditions hold, and let E € 2(57) and let
E € {l. Then clearly, E C |J;_, U;. Thus by the hypothesis, £ C [Jj_, Vj. Now let
U; be such that U; C Vj;. Since ENU; # ¢y and ENV; # ¢r, ENV; # ¢;, for each
j. So E €. Hence 4 C V.

(2) Let E e< Icd(Uy), - ,Ic(Uy) >, let =< Vq,---,V,, >€ N, (E), and let
U=UL U, and V = U;’L:IV. Since U € N, (E), E € U, i.e., E C V. Thus
E C Icl(V). Moreover, E N Icl(U;) # ¢p, for i = 1,--- ,n and ENV; # ¢, for
j=1,---,m. So Vﬁlcl( )75(]51 #V;NIc(U) imply that VNU; # ¢r #V; NU,
fori=1,---,nand j =1,--- ,m. Choose z;; € VNU; [resp. x; v € VNU,,
fori=1,--- ,nand y;1 € VJ ﬂU [resp. y;rv € V;NU], for j =1,--- ,m and let
F= U iU [U;nﬂ yj1) [resp. F = [UZ, zi,rv] U [U;vn:l Yyj,rv]]. Since (X,7)
be both Ty (¢ii) and Ty (viii), by Result 3.13 [resp. Definition 3.12], F € IC(X).
Moreover, F' € $INY # ¢. So E is a limit point of 4, ie., E € cl(i). Hence
< Ic(Uy),---,Ic(Uy,) >Ccl < Uy, -+ ,Uy, >.

On the other hand, we can easily that

< Icl(Uy), - Id(Uy,) >= ([ {E € 27 : EnTel(U;) # ¢1})N < Iel(U) >
i=1
12
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Then by Corollary 3.22, {E € 257 . ENIcl(U;) # ¢r} is closed in 2(57). Thus
(N {E € 257« EnIe(U;) # ¢r})N < Icd(U) > is closed in 2057, So <
Icl(Uy),--- , Icl(Uy,) > is closed in 2(X7) and U c< Icl(Uy),- -+, Icl(U,) >. Hence
c(W) c< Iel(Uy), - -+, Icl(U,) >. This completes the proof. O

4. THE RELATIONSHIPS BETWEEN OPENESS IN ITS (X, 7) AND ITS HYPERSPACE
9(X,7)

In this section, we find some relationships between openess in an ITS (X, 7) and
its hyperspace 2(X:7).

Result 4.1 ([11], Proposition 3.16). Let (X, 7) be a ITS such that 7 C 15,(X) and
let Ae IS.(X).

(1) If there is U € T such that a; € U C A, for each ay € A, then A € T.

(2) If there is U € T such that ajy € U C A, for each ary € A, then A € 7.

Proposition 4.2. Let (X,7) be Ty(iii) [resp. Ty(viii)].

(1) If {U;}jes is a neighborhood base at xr [resp. xrv] , then {< U; >}ics is a
neighborhood base at {x;} [resp. {xpy}] in 2057,

(2) If © is open in 257 then UD € 1, where 7 C I5,(X).

(3) If U € 7, then 2V =< U > is open in 257 where 7 C IS,(X).

Proof. (1) Tt is clear that {x;} € 2(57) [resp. {z;v} € 257)]. Let U, U € {<
U; >}jes such that {z;} € UNY [resp. {x;v} € UNY]. Then there are i, j € J
such that U =< U; >, ¥ =< V; >. Since {z;} € UNY [resp. x5y € 4N Y],
{z1} €< U; > and {21} €< U; > [resp. ;v €< U; > and x5y €< U; >]|. Thus
{z1} € U; and {z;} C U; [resp. {z;v} C U; and {z;v} C U], ie., zr € U; and
xr € U;j [resp. xrv € U; and x5y € Uj]. So by the hypothesis, there is k € J such
that z; € U, C U; NU; [resp. xpy € Uy C U; NU;]. Hence {z;} e< Uy, >C< U; >
N < U; > [resp. {zv} €< U >C< U; >N < U; >]. This completes the proof.

(2) It is sufficient to show that for each base element 4 =< Uy, --- ,U, >, | JU € 7.
Let U = U and let x € U [resp. zv € U]. Let O € 7 such that z; € O C U, U;
[resp. zyy € O C Ui, U;] and let y; € O [resp. yry € O]. Choose z; 1 € U;
[resp. x;rv € Uy, for for i = 1,--- ,n and let E = J{x1,1, - ,@n1,y1} [resp.
E = U{z1,v, - s&nrv,yrv}]. Since (X, 7) is Tq(it4) [resp. Ti(viii)], by Result
3.13 [resp. Definition 3.12], E € IC(X). Moreover, E C |J;_, U; and ENU; # ¢;.
Then y; € E € 8 [resp. yrv € E € 4. Soyr € U. Hence O C U, ie., zy € O CU
[resp. zry € O C U]. Therefore by Result 4.1, U = JU € 7.

(3) By Theorem 3.21, 2V = 2774U) — jnt(2V). Then 2V is open in 2057, O

The followings are immediate results of Propositions 3.15 and 4.2.

Corollary 4.3. Let (X,7) be T1(iii) [resp. T1(viii)] such that 7 C IS.(X).

(1) If {U;}jes is a neighborhood base at x; [resp. xrv] , then {< [ |U; >}jes
[resp. {<< > Uj >}jes is a neighborhood base at {x;} [resp. {xrv}] in 2(X701)
[resp. 2(X:m0.2) ],

(2) If O is open in 205701) [resp. 2(X:70.2) [ then UD € 791 [resp. UD € 7g2].

(3) If U € 701 [resp. U € To2], then 2V =< U > is open in 205701) [resp.
2(X,7'072)/'

13
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The followings are immediate results of Proposition 4.2 and Result 3.14.

Corollary 4.4. Let (X, 7) be Ty(iii) [resp. Ti(viii)].

(1) If {U;}jes is a neighborhood base at xp [resp. xrv] , then {< Ujr >}jcs
[resp. {< Ufp >}jes is a neighborhood base at {x} in 2(Xm) fresp, 2(X:m2) ],

(2) If © is open in 2057 [resp. 2X572) ] then UD € 71 [resp. UD € To].

(3) IfU € 1y [resp. U € 1o, then 2V =< U > is open in 20571 [resp. 2(X7m2) ],

Definition 4.5 ([6]). Let (X, 7) be an ITS and let A € IS5(X).

(i) & € IS(X) is called a cover of A, if A CJycq A

(ii) The cover 2 of A is called an open cover, if A € 7, for each A € 2.

In particular, 2 is called an open cover of X, if A C 7 and A C [J2.

(iii) A is called an intuitionistic compact subset of X, if every open cover of A
has a finite subcover.

(iv) (X, ) is said to be compact, if every open cover of X has a finite subcover.

(v) A family 20 C I.5(X) satisfies the finite intersection property (in short, FIP),
if for each finite subfamily 2, (A # ¢;.

Result 4.6 ([6], Proposition 5.4). Let (X,7) be an ITS. Then (X, ) is compact if
and only if (X, 70,1) is compact. In fact, (X, T) is compact if and only if (X, 1) is
compact.

Proposition 4.7. Let (X, 7) be Ty(ii) such that T C IS,(X). If 4 is open in the
subspace Ryx,m (X), then [JU € 7.

Proof. Without loss of generality, let 8 =< Uy, -+, U, > N Ryx,n(X) and let
U=Ju={A:Aecy}. Let x; € U. Then there is j such that z; € U;. Let us
take z; 1 € U;, for each i # j. For each y; € U;, let

E,, = U{xl,h ST 1L YL, Tik 1,1 T}

Then by Result 3.13, F,, € {. Thus y; € £y, C U. So xy € U; C U. Hence by
Result 4.1, Y4 € 7. O

The followings are immediate results of Proposition 4.7 and Results 3.13 and 4.6.

Corollary 4.8. Let (X, 7) be Ty (iii).
(1) If & is open in the subspace Rycx.r 1) (X), then [JU € 10.1.
(2) If ks open in Ryx,-) (X)), then ULl € 7y.

Proposition 4.9. Let (X, 7) be Ty(iii) such that 7 C IS.(X). If 4 is open in the
subspace Fax. ,(X), then J € 7.

Proof. Let U = |4 and let 21 1 € U. Then there is E € i such that 17 € U €
U Let B = {11, - ,Zm,1}, m < n. Since U is open in §ax.r ,(X), there
is a basic open set < Uy, -+ ,Ux > N Ryx.r) ,,(X) such that £ €< Uy,--- Uy >
N Ryxm n(X) € YU We may assume that z; 7 € Uy. Let § = {Uy,---,U}. For
each z; 1 € E,let § ={U; € §F: z;1 € U;} and let W; = (§;. Then by Theorem
3.23 (1),

Ec< Wy, ,Wp >0 Faxn o(X) C< UL -+, U >N Faxom n(X).
14
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Let y1,;1 € Wi. Then
Eyr={v1,0,%2, - ,xm} €< Wi, -, Wi >N Foxmy p(X)

Thus E,; € 4. So E,; C U. It follows that 1,7,y € Wi C U. Hence by Result
4.1, YU er. O

The following is the immediate result of Proposition 4.9.

Corollary 4.10. Let (X,7) be Ty(iit) such that 7 C IS.(X). If & is open in the
subspace Fox,m (X), then | JU € 7.

Definition 4.11 ([13]). An ITS X is said to be connected, if it cannot be expressed
as the union of two non-empty, disjoint open sets in X.

Definition 4.12 ([13]). (X, 7) be an ITS and let A, B € I5(X).

(i) A and B are said to be separated in X, if Icl(A)NB = ANIc(B) = ¢;.

(ii) A and B are said to form a separation of X, if A and B are said to be
separated in X and AU B = X7.

Result 4.13 ([13], Theorem 3.4). (X,7) be an ITS such that 7 C IS.(X). Then
the followings are equivalent:

(1) (X, 7) is connected,

(2) (X,70,1) is connected,

(3) (X, 71) is connected.

Definition 4.14 ([13]). Let (X,7) be an ITS. Then X is said to be:

(i) locally connected at p;y € Xy, if for each U € N(py), there is a connected
V € N(pr) such that V C U,

(ii) locally connected, if it is locally connected at each pr € X.

Definition 4.15 ([12]). (i) A T;(i)-space X is called a T5(¢)-space, if the following
conditions:

[the regular axiom (4)] for any F' € IC(X) such that z; € F°, there exist U,V €
IO(X) such that F CU,z; € Vand UNV = ¢r.

(ii) A Ty (ui)-space X is called a Tj5(ii)-space, if the following conditions:

[the regular axiom (4¢)] for any F € IC(X) such that z;y € F€, there exist
UV eIO(X)suchthat F CU, z;y € Vand UNV = ¢y.

Result 4.16 ([12], Theorem 4.4). Let (X, 7) be an ITS such that 7 C IS.(X). Then
(1) (X, 7) is T5(2) if and only if (X, 1) is Ts,
(2) (X,7) is T5(i7) if and only if (X, 72) is T3.

Result 4.17 ([12], Theorem 4.7). Let (X, 7) be an ITS such that 7 C IS.(X). Then
(1) (X,7) is T3(i) if and only (X, 7101) is T5(3),
(2) (X, 7) is T3(ii) if and only (X, 70,2) is T5(ii).
Proposition 4.18. Let (X, 1) be locally connected both Ty(iii) and T3(i) such that
T CIS(X). If L is open in the subspace Cyx.-) (X), then YU € 7.

Proof. Let x; € U = 4. Without loss of generality, let

U=<U,---,U, >N QQ(X,T)(X).
15
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Then there is F € 4 such that x; € E. Since x; € U = [J4, there is ¢ such that
xy € U;. Since (X, 7) is locally connected both Ty(éi¢) and T5(), by Definitions
4.14 and 4.15, there is a connected set V' € 7 such that 2y € V C Icl(V) C U;. Thus
EUlIcd(V)es SoV C EUId(V) CU. Hence by Result 4.1 (1), [JU € 7. O

The followings are immediate results of Proposition 4.18 and Result 4.17.

Corollary 4.19. Let (X,7) be locally connected both T (iii) and Ts(i) such that
T C I1S.(X). If W is open in the subspace €, x. 1) (X), then |JU € 10,1.

5. INTUITIONISTIC CONTINUOUS SET-VALUED MAPPINGS

In this section, we introduce an intuitionistic set-valued mapping and study its
some continuities.

Definition 5.1 ([5]). Let f : X — Y be a mapping, and let A € IS(X) and
B € IS(Y). Then

(i) the image of A under f, denoted by f(A), is an IS in Y defined as:

fA) = (f(A)r, f(A)F),

where f(A)r = f(Ar) and f(A)r = (f(AF))".

(ii) the preimage of B, denoted by f~!(B), is an IS in X defined as:

FHB) = (B, [H(B)r),

where f_l(B)T = f_l(BT) and f_l(B)F = f_l(BF)
Result 5.2. (See [5], Corollary 2.11) Let f : X — Y be a mapping and let A, B,C €
I15(X), (Aj)jes € IS(X) and D,E,F € IS(Y), (Di)kex C IS(Y). Then the

followings hold:
(1) if BC C, then f(B) C f(C) and if E C F, then f~*(E) C f~Y(F).

(2) AcC f Lf(A)) and if f is injective, then A = f~ 1f(A)),

(3) f(f~YD)) C D and if f is sur]ectwe then f( Y(D)) =D,

4) f~HUDK) =UfH(Dr), fHNDx) =N (Ds),

(5) F(UA;) =Uf(4), F(NA;) CNf(A),

(6) f(A) = on if and only if A= o¢n and hence f(pn) = ¢n, in particular if f
18 surjectwe then f(Xn) = Yn,

(7) f7'(YN) = YN, [T (oN) = ¢.

(8) if f is surjective, then f(A)¢ C f(A°) and furthermore, if f is injective, then

f(A) = ( C)

(9) f7HD%) = (f7H(D))".
Definition 5.3. Let X,Y be non-empty sets. Then a mapping F': Y — IS(X) is
called an intuitionistic set-valued mapping.

Example 5.4. (1) Let X = {a,b,c},Y = {1,2} and let F' : Y — ISX be given
by F(1) = ({a,b},{c}) and F(2) = ({a},{b}). Then F is an intuitionistic crisp
set-valued mapping. In particular, if A = ({a, b}, {c}), then
24 = {1, ({a} {c}), ({a}. {b,c}). ({0}, {c}). ({b}. {a. c}),
(@, {c}), (¢, {b; c}), (¢, {a, c})}.

(2) (See Definition 5.1) Let X,Y be non-empty sets, let f : X — Y be a mapping.
We define two mappings f. : IS(X) — IS(Y) and f_!:2¥1 — 2%1 as follows:
16
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(i) for cach A € IS(X), £.(A) = F(A) = (F(Ar), (F(45))°),
(il) for each B € IS(Y), £ 1(B) = f~1(B) = (f~\(Br). f~1(Br))-

Then f, and f ! are intuitionistic set-valued mappings.

Definition 5.5. Let X,Y be non-empty sets, let F,G : Y — I5(X) be intuition-
istic crisp set-valued mappings and let {F,)aer, where F, : Y — IS(X) is an
intuitionistic crisp set-valued mappings, for each o € T.

(i) F c G if and only if F'(y) C G(y), for each y € Y,

(i) (FUG)(y) = F(y) UG(y), for each y € Y,

(i) (FNG)(y) = F(y) N G(y), for each y €Y,
(iv) (User Fo)W) = Uger Fa, for each y € Y,
(v) (Naer Fa) ) = Naer Fa, for each y € Y.

Proposition 5.6. Let F,G:Y — [5(X) be intuitionistic set-valued mappings and
let {F,)aer, where F, :' Y — IS(X) is an intuitionistic set-valued mappings, for
each a € T and let 24 = {B € IS(X) : B C A}, for each A € IS(X).

(1) If F C G, then G~ (2A) Cc P~ ( 4.

(2) (FUG)™1(28) = F1(24) n G- (22),
in general, (Jyer Fa)*l(QA) = Noer Fa1(28).

3) FH2HuG 2 c (FnG) 12,
m geneml, UaEF F (2A) (maef‘ Fa)_1(2*A)

Proof. (1) Let y € G7*(22). Then G(y) € 24. Thus G(y) C A. Since F C G,
F(y) C G(y). So F(y) C A, ie., F(y) € 24, Hence y € F~'(24). Therefore
G™1(24) c F~1(22).

(2) Let y € (FUG) ™' (24) = F~1(2)NG~(24). Then (FUG)(y) = F(y)UG(y) €
24 ie., F(y)UG(y) = (F(y )TUG( ), F(y) rNG(y)r) C A. Thus F(y)r UG(y)r C
Ar and F(y)p ﬂG( )F D Ap. So F(y)T Cc Ar, G(y)T C Ar and F(y)p D Ap,
G(y)r D Ap, e, F(y) C Aand G(y) C 4, i.e., F(y) € 22 and G(y) € 24. Hence
ye F1(28) andy € G1(24), ie.,y € F71(22)NG~1(24). The converse inclusion
is proved similarly.

The proof of the second part is similar.

(3) Let y € F71(22) U G~1(22). Then y € F71(24) or y € G71(22), ie
F(y) € Aor G(y) C A. Then F(y) N G(y) C A. Thus (FNG)(y) C A, ie
(FNG)(y) €24, Soy e (FNG)~1(22). Hence the result holds.

The proof of the second part is similar. O

Theorem 5.7. Let (X, 7) be an ITS and let (Y,0) be an ordinary topological space
and let F : (Y,0) — 2057) be an intuitionistic set-valued mapping. Then F is
continuous if and only if the set

(5.5.1) FreN={yecY :F(y)ec2'}={ycY: :F(y) c A}

is open in'Y, whenever A € T, and is closed in'Y, whenever A € IC(X).
Equivalently, for each A € IC(X) [resp. A € 7], the set

(5.5.2) Y - F YA ={yeY :F(y)NnA# ¢}

is open [resp. closed] in'Y .
17



J. Kim et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx—xx

More precisely, F is continuous at y € Y if and only if both implication hold:

(5.5.3) y e F71(2%) = y cint(F~1(2%)), whenever G € 7
and
(5.5.4) y e cd(F71(25) = y € F71(2K), whenever K € IC(X).

Proof. Suppose F' is continuous at yg € Y. Let G be open in 2(X:7) and suppose
y € F7(G). Then F(y) € G. Since G is open in 2(X:7) G is a neighbourhood of
F(yo). Thus there exists U € 7, such that F(yo) € F(U) C G. Soyo € U C F~1(G).
Hence yo € int(F~1(G)).

Now let K be closed in 2(X:7) and suppose yo € cl(F~(K)). By result 5.2 (9),

A(F(K)) = cl(FH((K)7) = el F1(K9))° = (int(F~H(K*)))°.
Then yo € (int(F~1(K¢)))¢. Thus yo ¢ int(F~1(K°)) = int((F~1(K))¢). Since
int((F~Y(K)¢) C (F7Y(K))¢, yo ¢ (F~Y(K))°. So yo € F~!(K). Hence the follow-
ing implications:
(5.5.5) Yo € F7HQ) = yo € int(F~Y(Q)), whenever G is open in 2057)
and
(5.5.6) yo € d(F7HK)) = yo € FYK), whenever K is closed in 2057,

Therefore by replacing G by 2¢ for G € 7, and K by 2X for K € IC(X), we can
obtain two implications (5.5.3) and (5.5.4).

Conversely, suppose the implication (5.5.5) holds. Then we can easily see that
F is continuous at yo € Y. If the implication (5.5.6) holds, then we can easily see
that F' is continuous at yy € Y. Moreover, since the range of G can be restricted
to a subbase of 2(X7) | we may assume that G = 24 or G = (247)°¢ with A € 7. In
the first case, (5.5.5) follows directly from (5.5.3). In the second case, (5.5.6) can be
deduced from (5.5.4) O

)

Definition 5.8 ([6]). Let X,Y be an ITSs. Then a mapping f : X — Y is said to
be continuous, if f~1(V) € IO(X), for each V € IO(Y).

Definition 5.9. Let X,Y be ITSs. Then a mapping f : X — Y is said to be:
(i) open [0], if f(A) € IO(Y), for each A € IO(X),
(ii) closed [18], if f(F) € IC(Y), for each F € IC(X).

Theorem 5.10. Let (X, 1), (Y,0) be T} (iii)-spaces such that 7 C 1S,(X) and o C
I1S,.(Y), and let f : X — Y be intuitionistic continuous. Then the mapping f; ! :
2(Y:0)  9(X7) s continuous if and only if f is both intuitionistic open and closed.

Proof. Suppose f; 1 :2Y7 — 2% is continuous and let G € 7. Since X is a T} (iii)-
space, by Proposition 4.2 (3), 2¢ is open in 2(%.7) " Then by the hypothesis and
(5.5.1), (fH)71(2%) = (f~H~1(2%) = f(2) is open in 2(¥:9). Thus
FRH ={f(A) cIS(Y): Ac29} ={f(A) eIS(Y): Ac G} =2/
is open in 29). So by Theorem 3.21, f(G) € o, i.e., f is intuitionistic open.
Now let F' € IC(X). Then by Corollary 3.20, 2 is closed in 2(*:7). Since f ! is
continuous, (f71)~1(2F) = (f~H)~1(2F) = f(2F) = 2/ is closed in 2¥). Thus
18
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by Theorem 3.19, f(F) € IC(Y). So f is intuitionistic closed. Hence f is both
intuitionistic closed. Therefore f is both intuitionistic open and closed.
The converse can be easily proved. O

The following is the immediate result of Proposition 5.6 (2) and Theorem 5.7.

Proposition 5.11. Let (X, 1) be an ITS and (Y, o) be an ordinary topological space
and let F,G : (Y,0) — 2(X57) be intuitionistic set-valued mappings. If F and G are
continuous, then F'UG s continuous.

6. CONCLUSIONS

We introduced three types intuitionistic hyperspaces and obtained their some
properties. In the future, we expect that we will find some relationships between
separation axioms Tg, Ty, To, T3 and T4 in ITSs and intuitionistic hyperspaces.
Also we will deal with separability and axioms of countability between an ITS and
its hyperspace.
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