Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (Month 201y), pp. 1–xx

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Intuitionistic hyperspaces

J. Kim, P. K. Lim, J. G. Lee, K. Hur

Received 6 December 2017; Revised 27 December 2017; Accepted 25 January 2018

ABSTRACT. For an ITS (X, τ) , we introduce an intuitionistic hyperspace $(2^{(X,\tau)}, \tau_v)$ [resp. $(2^{(X,\tau_I)}, \tau_{I,v})$ and $(2^{(X,\tau_{IV})}, \tau_{IV,v})$] of τ -type [resp. τ_I -type and τ_{IV} -type]. And we give some examples of each hyperspace and obtain some properties of the hyperspace $(2^{(X,\tau)}, \tau_v)$. Next, we find some relationships between openess in an ITS (X,τ) and its hyperspace $2^{(X,\tau)}$. Finally, we introduce an intuitionistic set-valued mapping and study its some continuities.

2010 AMS Classification: 54A40, 54B20

Keywords: Intuitionistic topological space, Intuitionistic locally compact space, Intuitionistic connected space, $T_3(i)$ -space, Intuitionistic hyperspace, Intuitionistic set-valued mapping.

Corresponding Author: J. Kim (junhikim@wku.ac.kr)

1. Introduction

In 1983, Atanassove [1] introdued the concept of intuitionstic fuzzy sets as a generalization of a fuzzy set proposed by Zadeh [24]. In 1996, Coker [5] introduced the concept of an intuitionistic set (called an intuitionistic crisp set by Salama et al.[21]) as the generalization of an ordinary set and the specialization of an intuitionistic fuzzy set. After that time, many researchers [3, 4, 6, 7, 8, 20, 18, 22, 23] applied the notion to topology. Recently, Kim et al. [10] studied the category ISet composed of intuitionistic sets and morphisms between them in the sense of a topological universe. Also, Kim et al. [11] studied some additional properties and give some examples related to intuitionistic closures and intuitionistic interiors in intuitionistic topological spaces. Lee et al. [15] investigate limit points and nets in an intuitionistic topological space. Also they [16] introduced some types of continuities, open and closed mappings, and intuitionistic subspaces. Moreover, they [17] investigated intuitionistic relation. In particular, Bavithra et al. [2] studied intuitionistic Fell topological spaces.

In this paper, first of all, we list some concepts related to intuitionistic sets and some results obtained by [5, 6, 7, 10, 11]. Second, for an ITS (X, τ) , we introduce an intuitionistic hyperspace $(2^{(X,\tau)}, \tau_v)$ [resp. $(2^{(X,\tau_I)}, \tau_{I,v})$ and $(2^{(X,\tau_{IV})}, \tau_{IV,v})$] of τ -type [resp. τ_I -type and τ_{IV} -type]. And we give some examples of each hyperspace and obtain some properties of the hyperspace $(2^{(X,\tau)}, \tau_v)$. Third, we find some relationships between openess in an ITS (X,τ) and its hyperspace $2^{(X,\tau)}$. Finally, we introduce an intuitionistic set-valued mapping and study its some continuities.

2. Preliminaries

In this section, we list some concepts related to intuitionistic sets and some results obtained by [5, 6, 7, 10, 11].

Definition 2.1 ([5]). Let X be a non-empty set. Then A is called an intuitionistic set (in short, IS) of X, if it is an object having the form

$$A = (A_T, A_F),$$

such that $A_T \cap A_F = \phi$, where A_T [resp. A_F] is called the set of members [resp. nonmembers] of A.

In fact, A_T [resp. A_F] is a subset of X agreeing or approving [resp. refusing or opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by ϕ_I [resp. X_I], is defined by $\phi_I = (\phi, X)$ [resp. $X_I = (X, \phi)$].

In general, $A_T \cup A_F \neq X$.

We will denote the set of all ISs of X as IS(X).

Definition 2.2 ([5]). Let $A, B \in IS(X)$ and let $(A_j)_{j \in J} \subset IS(X)$.

- (i) We say that A is contained in B, denoted by $A \subset B$, if $A_T \subset B_T$ and $A_F \supset B_F$.
- (ii) We say that A equals to B, denoted by A = B, if $A \subset B$ and $B \subset A$.
- (iii) The complement of A denoted by A^c , is an IS of X defined as:

$$A^c = (A_F, A_T).$$

(iv) The union of A and B, denoted by $A \cup B$, is an IS of X defined as:

$$A \cup B = (A_T \cup B_T, A_F \cap B_F).$$

(v) The union of $(A_j)_{j\in J}$, denoted by $\bigcup_{j\in J}A_j$ (in short, $\bigcup A_j$), is an IS of X defined as:

$$\bigcup_{j\in J}A_j=(\bigcup_{j\in J}A_{j,T},\bigcap_{j\in J}A_{j,F}).$$

(vi) The intersection of A and B, denoted by $A \cap B$, is an IS of X defined as:

$$A \cap B = (A_T \cap B_T, A_F \cup B_F).$$

(vii) The intersection of $(A_j)_{j\in J}$, denoted by $\bigcap_{j\in J}A_j$ (in short, $\bigcap A_j$), is an IS of X defined as:

$$\bigcap_{j \in J} A_j = (\bigcap_{j \in J} A_{j,T}, \bigcup_{j \in J} A_{j,F}).$$

 $(viii) A - B = A \cap B^c.$

$$(ix)'[]A = (A_T, A_T^c), <> A = (A_F^c, A_F).$$

Result 2.3 ([10], Proposition 3.6). Let $A, B, C \in IS(X)$. Then

- (1) (Idempotent laws): $A \cup A = A$, $A \cap A = A$,
- (2) (Commutative laws): $A \cup B = B \cup A$, $A \cap B = B \cap A$,
- (3) (Associative laws): $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$,
- (4) (Distributive laws): $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

- (5) (Absorption laws): $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$,
- (6) (DeMorgan's laws): $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$,
- $(7) (A^c)^c = A,$
- (8) (8a) $A \cup \phi_I = A, A \cap \phi_I = \phi_I,$
 - (8b) $A \cup X_I = X_I, \ A \cap X_I = A,$
 - (8c) $X_I^c = \phi_I, \ \phi_I^c = X_I,$
 - (8d) in general, $A \cup A^c \neq X_I$, $A \cap A^c \neq \phi_I$.

We will denote the family of all ISs A in X such that $A_T \cup A_F = X$ as $IS_*(X)$, i.e.,

$$IS_*(X) = \{ A \in IS(X) : A_T \cup A_F = X \}.$$

In this case, it is obvious that $A \cap A^c = \phi_I$ and $A \cup A^c = X_I$ and thus

$$(IS_*(X), \subset, \phi_I, X_I)$$

is a Boolean algebra. In fact, there is a one-to-one correspondence between P(X) and $IS_*(X)$, where P(X) denotes the power set of X. Moreover, for any $A, B \in IS_*(X)$, $A = A_I = []A = <>A \text{ and } A \cup B, A \cap B, A - B \in IS_*(X).$

Definition 2.4 ([5]). Let X be a non-empty set, $a \in X$ and let $A \in IS(X)$.

- (i) The form $(\{a\}, \{a\}^c)$ [resp. $(\phi, \{a\}^c)$] is called an intuitionistic point [resp. vanishing point] of X and denoted by a_I [resp. a_{IV}].
- (ii) We say that a_I [resp. a_{IV}] is contained in A, denoted by $a_I \in A$ [resp. $a_{IV} \in A$], if $a \in A_T$ [resp. $a \notin A_F$].

We will denote the set of all intuitionistic points or intuitionistic vanishing points in X as IP(X).

Definition 2.5 ([6]). Let X be a non-empty set and let $\tau \subset IS(X)$. Then τ is called an intuitionistic topology (in short IT) on X, if it satisfies the following axioms:

- (i) $\phi_I, X_I \in \tau$,
- (ii) $A \cap B \in \tau$, for any $A, B \in \tau$,
- (iii) $\bigcup_{j \in J} A_j \in \tau$, for each $(A_j)_{j \in J} \subset \tau$.

In this case, the pair (X, τ) is called an intuitionistic topological space (in short, ITS) and each member O of τ is called an intuitionistic open set (in short, IOS) in X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if $F^c \in \tau$.

It is obvious that $\{\phi_I, X_I\}$ is the smallest IT on X and will be called the intuitionistic indiscreet topology and denoted by $\tau_{I,0}$. Also IS(X) is the greatest IT on X and will be called the intuitionistic discreet topology and denoted by $\tau_{I,1}$. The pair $(X, \tau_{I,0})$ [resp. $(X, \tau_{I,1})$] will be called the intuitionistic indiscreet [resp. discreet] space.

We will denote the set of all ITs on X as IT(X). For an ITS X, we will denote the set of all IOSs [resp. ICSs] on X as IO(X) [resp. IC(X)].

Example 2.6. (1) ([6], Example 3.2) For any ordinary topological space (X, τ_o) , let $\tau = \{(A, A^c) : A \in \tau_o\}$. Then clearly, (X, τ) is an ITS.

- (2) ([6], Example 3.4) Let (X,τ) be an ordinary topological space such that τ is not indiscrete, where $\tau = \{\phi, X\} \cup \{G_j : j \in J\}$. Then there exist two ITs on X as follows: $\tau^1 = \{\phi_I, X_I\} \cup \{(G_i, \phi) : j \in J\}$ and $\tau^2 = \{\phi_I, X_I\} \cup \{(\phi, G_i^c) : j \in J\}$.
- (3) ([11], Example 3.2 (4)) Let X be a set and let $A \in IS(X)$. Then A is said to be finite, if A_T is finite. Consider the family $\tau = \{U \in IS(X) : U = \phi_I \text{ or } U^c \text{ is finite}\}.$ Then we can easily show that τ is an IT on X.

In this case, τ will be called an intuitionistic cofinite topology on X and denoted by ICof(X).

(4) ([11], Example 3.2 (5)) Let X be a set and let $A \in IS(X)$. Then A is said to be countable, if A_T is countable. Consider the family $\tau = \{U \in IS(X) : U = \{U \in IS($ ϕ_I or U^c is countable. Then we can easily show that τ is an IT on X.

In this case, τ will be called an intuitionistic cocountable topology on X and denoted by ICoc(X).

Result 2.7 ([6], Proposition 3.5). Let (X, τ) be an ITS. Then the following two ITs on X can be defined by:

$$\tau_{0,1} = \{[]U: U \in \tau\}, \tau_{0,2} = \{< > U: U \in \tau\}.$$

Furthermore, the following two ordinary topologies on X can be defined by (See [3]):

$$\tau_1 = \{U_T : U \in \tau\}, \ \tau_2 = \{U_F^c : U \in \tau\}.$$

Remark 2.8 ([11], Remark 3.4). (1) Let (X, τ) be an ITS such that $\tau \subset IS_*(X)$. Then it is obvious that $\tau = \tau_{0,1} = \tau_{0,2}$.

- (2) For an IT τ on a set X, we will denote two ITs $\tau_{0,1}$ and $\tau_{0,2}$ defined in Result 2.7 as $\tau_{0,1} = [\tau \text{ and } \tau_{0,2} = < > \tau, \text{ respectively.}]$
- (3) For an IT τ on a set X, let τ_1 and τ_2 be ordinary topologies on X defined in Result 2.7. Then (X, τ_1, τ_2) is a bitopological space by Kelly [9] (Also see Proposition 3.1 in [4]).

Definition 2.9 ([6]). Let (X, τ) be an ITS.

- (i) A subfamily β of τ is called an intuitionistic base (in short, IB) for τ , if for each $A \in \tau$, $A = \phi_I$ or there exists $\beta' \subset \beta$ such that $A = \bigcup \beta'$.
- (ii) A subfamily σ of τ is called an intuitionistic subbase (in short, ISB) for τ , if the family $\beta = \{ \bigcap \sigma' : \sigma' \text{ is a finite subset of } \sigma \}$ is a base for τ .

In this case, the IT τ is said to be generated by σ . In fact, $\tau = \{\phi_I\} \cup \{\bigcup \beta' :$ $\beta' \subset \beta$.

Definition 2.10 ([7]). Let X be an ITS, $p \in X$ and let $N \in IS(X)$. Then

(i) N is called a neighborhood of p_I , if there exists an IOS G in X such that

$$p_I \in G \subset N$$
, i.e., $p \in G_T \subset N_T$ and $G_F \supset N_F$,

(ii) N is called a neighborhood of p_{IV} , if there exists an IOS G in X such that

$$p_{IV} \in G \subset N$$
, i.e., $G_T \subset N_T$ and $p \notin G_F \supset N_F$.

We will denote the set of all neighborhoods of p_I [resp. p_{IV}] by $N(p_I)$ [resp. $N(p_{IV})$].

Result 2.11 ([7], Proposition 3.4). Let (X, τ) be an ITS. We define the families

$$\tau_I = \{G : G \in N(p_I), \text{ for each } p_I \in G\}$$

and

$$\tau_{IV} = \{G : G \in N(p_{IV}), \text{ for each } p_{IV} \in G\}.$$

Then $\tau_I, \tau_{IV} \in IT(X)$.

In fact, from Remark 4.5 in [11], we can see that for an IT τ on a set X and each $U \in \tau$,

$$\tau_I = \tau \cup \{(U_T, S_U) : S_U \subset U_F\} \cup \{(\phi, S) : S \subset X\}$$

and

$$\tau_{IV} = \tau \cup \{(S_U, U_F) : S_U \supset U_T \text{ and } S_U \cap U_F = \phi\}.$$

Result 2.12 ([7], Proposition 3.5). Let (X, τ) be an ITS. Then $\tau \subset \tau_I$ and $\tau \subset \tau_{IV}$.

Result 2.13 ([11], Corollary 4.8). Let (X, τ) be an ITS and let IC_{τ} [resp. IC_{τ_I} and $IC_{\tau_{IV}}$] be the set of all ICSs w.r.t. τ [resp. τ_I and τ_{IV}]. Then

$$IC_{\tau}(X) \subset IC_{\tau_I}(X)$$
 and $IC_{\tau}(X) \subset IC_{\tau_{IV}}(X)$.

Result 2.14 ([7], Proposition 3.9). Let (X, τ) be an ITS. Then $\tau = \tau_I \cap \tau_{IV}$.

Result 2.15 ([11], Corollary 4.13). Let (X, τ) be an ITS and let IC_{τ} . Then

$$IC_{\tau}(X) = IC_{\tau_I}(X) \cap IC_{\tau_{IV}}(X).$$

Definition 2.16 ([6]). Let (X, τ) be an ITS and let $A \in IS(X)$.

(i) The intuitionistic closure of A w.r.t. τ , denoted by Icl(A), is an IS of X defined as:

$$Icl(A) = \bigcap \{K: K^c \in \tau \text{ and } A \subset K\}.$$

(ii) The intuitionistic interior of A w.r.t. τ , denoted by Iint(A), is an IS of X defined as:

$$Iint(A) = \bigcup \{G : G \in \tau \text{ and } G \subset A\}.$$

Result 2.17 ([6], Proposition 3.15). Let (X, τ) be an ITS and let $A \in IS(X)$. Then $Iint(A^c) = (Icl(A))^c$ and $Icl(A^c) = (Iint(A))^c$.

3. Intuitionistic hyperspaces

In this section, for an ITS (X, τ) , we introduce an intuitionistic hyperspace $(2^{(X,\tau)}, \tau_v)$ [resp. $(2^{(X,\tau_I)}, \tau_{I,v})$ and $(2^{(X,\tau_{IV})}, \tau_{IV,v})$] of τ -type [resp. τ_I -type and τ_{IV} -type]. And we give some examples of each hyperspace and obtain some properties of the hyperspace $(2^{(X,\tau)}, \tau_v)$.

Notation 3.1. Let (X, τ) be an ITS. Then

- (1) $2^{(X,\tau)} = \{ E \in IS(X) : \phi_I \neq E \in IC_\tau(X) \},$
- (2) $2^{(X,\tau_I)} = \{ E \in IS(X) : \phi_I \neq E \in IC_{\tau_I}(X) \},$
- (3) $2^{(X,\tau_{IV})} = \{ E \in IS(X) : \phi_I \neq E \in IC_{\tau_{IV}}(X) \},$
- (4) $\mathfrak{F}_{2(X,\tau),n}(X) = \{ E \in 2^{(X,\tau)} : E_T \text{ has at most n elements} \},$

- (5) $\mathfrak{F}_{2^{(X,\tau)}}(X) = \{ E \in 2^{(X,\tau)} : E_T \text{ is finite} \},$
- (6) $\mathfrak{K}_{2(X,\tau)}(X) = \{E \in 2^{(X,\tau)} : E \text{ is compact}\},\$
- (7) $\mathfrak{C}_{2(X,\tau)}(X) = \{ E \in 2^{(X,\tau)} : E \text{ is connected} \},$
- (8) $\mathfrak{C}_{2^{(X,\tau)},K}(X) = \mathfrak{K}_{2^{(X,\tau)}}(X) \cap \mathfrak{C}_{2^{(X,\tau)}}(X).$

The following is the immediate result of Notation 3.1, and Results 2.12 and 2.14.

Proposition 3.2. Let (X, τ) be an ITS. Then

$$2^{(X,\tau)} \subset 2^{(X,\tau_I)}$$
 and $2^{(X,\tau)} \subset 2^{(X,\tau_{IV})}$.

Moreover, $2^{(X,\tau)} = 2^{(X,\tau_I)} \cap 2^{(X,\tau_{IV})}$.

Example 3.3. Let $X = \{a, b, c\}$ and let τ be the IT on X given by:

$$\tau = \{\phi_I, X_I, A_1, A_2, A_3, A_4\},\$$

where $A_1 = (\{a\}, \{b\}), A_2 = (\{b\}, \{c\}), A_3 = (\{a, b\}, \phi), A_4 = (\phi, \{b, c\}).$ Then $\tau_I = \tau \cup \{A_5, A_6, A_7, A_8, A_9\}$ and $\tau_I = \tau \cup \{A_{10}, A_{11}, A_{12}\},$ where $A_5 = (\phi, \{a\}), A_6 = (\phi, \{b\}), A_7 = (\phi, \{c\}), A_8 = (\phi, \{a, b\}),$ $A_9 = (\phi, \{a, c\}), A_{10} = (\{a, c\}, \{b\}), A_{11} = (\{a, b\}, \{c\}), A_{12} = (\{a\}, \{b, c\}).$ Thus $IC_{\tau}(X) = \{\phi_I, X_I, F_1, F_2, F_3, F_4\},$

 $IC_{\tau_I}(X) = IC_{\tau}(X) \cup \{F_5, F_6, F_7, F_8, F_9\}$

and

$$\begin{split} IC_{\tau_{IV}}(X) &= IC_{\tau}(X) \cup \{F_{10}, F_{11}, F_{12}\}, \\ \text{where } F_1 &= (\{b\}, \{a\}), \ F_2 = (\{c\}, \{b\}), \ F_3 = (\phi, \{a, b\}), \ F_4 = (\{b, c\}, \phi), \\ F_5 &= (\{a\}, \phi), \ F_6 = (\{b\}, \phi), \ F_7 = (\{c\}, \phi), \ F_8 = (\{a, b\}, \phi), \\ F_9 &= (\{a, c\}, \phi), \ F_{10} = (\{b\}, \{a, c\}), \ F_{11} = (\{c\}, \{a, b\}), \ F_{12} = (\{b, c\}, \{a\}). \\ \text{So} \quad 2^{(X, \tau)} &= \{X_I, F_1, F_2, F_3, F_4\}, \\ 2^{(X, \tau_{IV})} &= 2^{(X, \tau)} \cup \{F_5, F_6, F_7, F_8, F_9\}, \\ 2^{(X, \tau_{IV})} &= 2^{(X, \tau)} \cup \{F_{10}, F_{11}, F_{12}\}. \end{split}$$

In fact, we can confirm that Proposition 3.2 holds.

Proposition 3.4. Let (X, τ) be an ITS and let

$$\beta_{\tau,v} = \{ \langle U_1, U_2, ..., U_n \rangle_{\tau,v} \colon U_j \in \tau \text{ for } j = 1, ..., n \},$$

$$\beta_{\tau_I,v} = \{ \langle U_1, U_2, ..., U_n \rangle_{\tau_I,v} \colon U_j \in \tau \text{ for } j = 1, ..., n \},$$

$$\beta_{\tau_{IV},v} = \{ \langle U_1, U_2, ..., U_n \rangle_{\tau_{IV},v} \colon U_j \in \tau \text{ for } j = 1, ..., n \},$$
where
$$\langle U_1, U_2, ..., U_n \rangle_{\tau_{IV},v}$$

$$= \{ E \in 2^{(X,\tau)} \colon E \subset \bigcup_{j=1}^n U_j \text{ and } E \cap U_j \neq \phi_I \text{ for } j = 1, ..., n \},$$

$$\langle U_1, U_2, ..., U_n \rangle_{\tau_{IV},v}$$

$$= \{ E \in 2^{(X,\tau_I)} \colon E \subset \bigcup_{j=1}^n U_j \text{ and } E \cap U_j \neq \phi_I \text{ for } j = 1, ..., n \},$$

$$\langle U_1, U_2, ..., U_n \rangle_{\tau_{IV},v}$$

$$= \{ E \in 2^{(X,\tau_{IV})} \colon E \subset \bigcup_{j=1}^n U_j \text{ and } E \cap U_j \neq \phi_I \text{ for } j = 1, ..., n \},$$

Then there exists a unique topology τ_v [resp. $\tau_{I,v}$ and $\tau_{IV,v}$] on $2^{(X,\tau)}$ [resp. $2^{(X,\tau_I)}$ and $2^{(X,\tau_{IV})}$] such that $\beta_{\tau,v}$ [resp. $\beta_{\tau_I,v}$ and $\beta_{\tau_{IV},v}$] is a base for τ_v [resp. $\tau_{I,v}$ and $\tau_{IV,v}$].

Proof. Clearly, $X_I \in \tau$ and $< X_I >_{\tau,v} \in \beta_{\tau,v}$. Then $\bigcup \beta_{\tau,v} = < X_I >_{\tau,v} = 2^{(X,\tau)}$. Let $< U_1, U_2, ..., U_n >_{\tau,v}, < V_1, V_2, ..., V_m >_{\tau,v} \in \beta_{\tau,v}$ and let $U = \bigcup_{i=1}^n U_i, V = \bigcup_{j=1}^m V_j$. Let $\mathbf{B}_{\tau,\mathbf{v}} = < U_1 \cap V, U_2 \cap V, ..., U_n \cap V, U \cap V_1, U \cap V_2, ..., U \cap V_m >_{\tau,v}$. Let $E \in \mathbf{B}_{\tau,\mathbf{v}}$. Then $E \subset \bigcup_{i=1}^n [(U_i \cap V)] \cup \bigcup_{j=1}^m [(U \cap V_j)], E \cap U_i \cap V \neq \phi_I$, for i = 1, ..., n and $E \cap U \cap V_j \neq \phi_I$, for j = 1, ..., m. Thus

$$F \in \mathbf{B}_{\tau,\mathbf{v}} = \langle U_1, U_2, ..., U_n \rangle_{\tau,v} \cap \langle V_1, V_2, ..., V_m \rangle_{\tau,v}$$
.

So $\beta_{\tau,v}$ generates the unique topology τ_v on $2^{(X,\tau)}$ such that $\beta_{\tau,v}$ is a base for τ_v . Similarly, we can show that $\beta_{\tau_I,v}$ and $\beta_{\tau_{IV},v}$ generate the unique topologies $\tau_{\tau_I,v}$ and $\tau_{\tau_{IV},v}$ on $2^{(X,\tau_I)}$ and $2^{(X,\tau_{IV})}$ such that $\beta_{\tau_I,v}$ and $\beta_{\tau_{IV},v}$ are bases for $\tau_{\tau_I,v}$ and $\tau_{\tau_{IV},v}$, respectively.

In the above Proposition, the topology τ_v [resp. $\tau_{I,v}$ and $\tau_{IV,v}$] on $2^{(X,\tau)}$ [resp. $2^{(X,\tau_I)}$ and $2^{(X,\tau_I)}$] induced by $\beta_{\tau,v}$ [resp. $\beta_{\tau_I,v}$ and $\beta_{\tau_{IV},v}$] will be called the intuitionistic Vietories topology (in short, IVT) on $2^{(X,\tau)}$ [resp. $2^{(X,\tau_I)}$ and $2^{(X,\tau_{IV})}$]. The pair $(2^{(X,\tau_I)},\tau_v)$ [resp. $(2^{(X,\tau_I)},\tau_{I,v})$] and $(2^{(X,\tau_{IV})},\tau_{IV,v})$] will be called an intuitionistic hyperspace of τ -type [resp. τ_I -type and τ_{IV} -type].

The following is the immediate result of Proposition 3.4, and Results 2.12 and 2.14.

Proposition 3.5. Let (X, τ) be an ITS. Then $\tau_v \subset \tau_{I,v}$ and $\tau_v \subset \tau_{IV,v}$. Moreover,

$$\tau_v = \tau_{I,v} \cap \tau_{IV,v}$$
.

Example 3.6. Let (X, τ) be the ITS in Example 3.3. Then we can easily check the followings:

```
 \begin{aligned} \tau_v &= \{\phi, \{F_1\}, \{F_3\}, \{F_1, F_3\}, \{F_2, F_4, X_I\}, \{F_1, F_2, F_4, X_I\}, \{F_2, F_3, F_4, X_I\}, 2^{(X,\tau)}\}, \\ \tau_{I,v} &= \{\phi, \{F_1\}, \{F_3\}, \{F_5\}, \{F_1, F_3\}, \{F_1, F_5\}, \{F_1, F_6\}, \{F_3, F_5\}, \{F_5, F_8\}, \\ \{F_1, F_3, F_5\}, \{F_1, F_3, F_6\}, \{F_1, F_5, F_8\}, \{F_5, F_6, F_8\}, \{F_1, F_5, F_6, F_8\}, \\ \{F_1, F_3, F_5, F_6\}, \{F_1, F_3, F_5, F_8\}, \{F_3, F_5, F_6, F_8\}, \{F_1, F_3, F_5, F_6, F_8\}, \\ \{F_2, F_4, X_I\}, \{F_1, F_2, F_4, X_I\}, \{F_2, F_3, F_4, X_I\}, 2^{(X,\tau)}\}, \\ \{F_1, F_4, F_5, F_6, F_7, F_8, F_9, X_I\}, \{F_1, F_3, F_4, F_5, F_6, F_7, F_8, F_9, X_I\}, \\ \{F_1, F_2, F_4, F_5, F_6, F_7, F_8, F_9, X_I\}, 2^{(X,\tau_I)}\}, \\ \tau_{IV,v} &= \{\phi, \{F_1\}, \{F_2\}, \{F_3\}, \{F_1, F_2\}, \{F_1, F_3\}, \{F_1, F_{10}\}, \{F_2, F_3\}, \{F_1, F_2, F_3, F_{10}\}, \{F_2, F_3, F_{10}\}, \{F_2, F_4, X_I\}, \{F_1, F_2, F_3, F_{11}, F_{12}, X_I\}, 2^{(X,\tau_{IV})}\}, \\ \{F_2, F_4, X_I\}, \{F_1, F_2, F_4, X_I\}, \{F_1, F_2, F_3, F_{11}, F_{12}, X_I\}, 2^{(X,\tau_{IV})}\}. \end{aligned}
```

In fact, we can confirm that Proposition 3.5 holds.

Proposition 3.7. Let (X, τ) be an ITS. Then the following two subfamilies $\beta_{\tau_{0,1}}$ and $\beta_{\tau_{0,2}}$ of $2^{(X,\tau)}$, respectively can be defined by:

$$\beta_{\tau_{0,1}} = \{ \langle []U_1, \cdots, []U_n \rangle_{\tau_{0,1}} : U_j \in \tau \text{ for } j = 1, ..., n \}$$

and

$$\begin{array}{ll} \beta_{\tau_{0,2}} = \{<<>U_1, \cdots, <>U_n>_{\tau_{0,2}} : U_j \in \tau \text{ for } j=1,...,n\},\\ where &<[\]U_1, \cdots, [\]U_n>_{\tau_{0,1}}\\ &=\{[\]E \in 2^{(X,\tau_{0,1})} : [\]E \subset \bigcup_{j=1}^n [\]U_j,\ [\]E \cap [\]U_j \neq \phi_I, \text{ for } j=1,...,n,\\ 7 \end{array}$$

$$E^c \in \tau$$

and

$$<<>U_1,\cdots,<>U_n>_{\tau_{0,2}}$$
 = $\{<>E\in 2^{(X,\tau_{0,2})}:<>E\subset \bigcup_{j=1}^n<>U_j,<>E\cap <>U_j\neq \phi_I,$ for $j=1,...,n,E^c\in \tau\}.$

Furthermore, $\beta_{\tau_{0,1}}$ and $\beta_{\tau_{0,2}}$ generate unique topologies $(\tau_{0,1})_v$ and $(\tau_{0,2})_v$ on $2^{(X,\tau)}$

In this case, the pair $(2^{(X,\tau)},(\tau_{0,1})_v)$ [resp. $(2^{(X,\tau)},(\tau_{0,2})_v)$] will be called an intuitionistic hyperspace of $\tau_{0,1}$ -type [resp. $\tau_{0,2}$ -type] and simply, will be denoted $2^{(X,\tau_{0,1})}$ [resp. $2^{(X,\tau_{0,2})}$].

Proof. The proofs are easy.

Example 3.8. Let (X,τ) be the ITS in Example 3.3. Then

$$[A_1 = (\{a\}, \{b, c\}), [A_2 = (\{b\}, \{a, c\}), [A_3 = (\{a, b\}, \{c\})]]$$

and

$$<>A_1=(\{a,c\},\{b\}),<>A_2=(\{a,b\},\{c\}),<>A_3=(\{a\},\{b,c\}).$$

Thus

$$IC_{\tau_{0,1}}(X) = \{\phi_I, X_I, []F_1, []F_2, []F_4\}$$

and

$$IC_{\tau_{0,2}}(X) = \{\phi_I, X_I, <> F_1, <> F_2, <> F_3\},\$$

where
$$[]F_1 = (\{b\}, \{a, c\}), []F_2 = (\{c\}, \{a, b\}), []F_4 = (\{b, c\}, \{a\})$$

and

$$<>F_1=(\{b,c\},\{a\}), <>F_2=(\{a,c\},\{b\}), <>F_3=(\{c\},\{a,b\}).$$
 So $(\tau_{0,1})_v=\{\phi,\{X_I\},\{[\]F_1,[\]F_4,X_I\},2^{(X,\tau_{0,1})}\}$

and

$$\begin{split} (\tau_{0,2})_v &= \{\phi, \{<>F_2\}, \{<>F_2, <>F_3\}, \{<>F_2, X_I\}, \\ &\{<>F_1, <>F_2, X_I\}, \{<>F_2, <>F_3, X_I\}, 2^{(X,\tau_{0,2}}\}. \end{split}$$

Proposition 3.9. Let (X, τ) be an ITS. Then the following two ordinary subfamilies β_{τ_1} and β_{τ_2} of $2^{(X,\tau)}$, respectively can be defined by:

$$\beta_{\tau_1} = \{ \langle U_{1,T}, \cdots, U_{n,T} \rangle_{\tau_1} : U_j \in \tau \text{ for } j = 1, ..., n \}$$

and

$$\beta_{\tau_2} = \{ \langle U_{1,F}^c, \cdots, U_{n,F}^c \rangle_{\tau_2} \colon U_j \in \tau \text{ for } j = 1, ..., n \},$$
where $\langle U_{1,T}, \cdots, U_{n,T} \rangle_{\tau_1}$

$$E < U_{1,T}, \cdots, U_{n,T} >_{\tau_1}$$

= $\{E \in 2^{(X,\tau_1)} : E \subset \bigcup_{j=1}^n U_{j,T} \text{ and } E \cap U_{j,T} \neq \phi \text{ for } j = 1, ..., n\}$

and

$$\langle U_{1,F}^c, \cdots, U_{n,F}^c \rangle_{\tau_2}$$

= $\{E \in 2^{(X,\tau_2)} : E \subset \bigcup_{j=1}^n U_{j,F}^c \text{ and } E \cap U_{j,F}^c \neq \phi \text{ for } j=1,...,n\}.$

Furthermore, β_{τ_1} and β_{τ_2} generate unique ordinary Vietories topologies $\tau_{1,v}$ and $\tau_{2,v}$ on 2^X .

In this case, the pair $(2^{(X,\tau)}, \tau_{1,v})$ [resp. $(2^{(X,\tau)}, \tau_{2,v})$] will be called an ordinary hyperspace of τ_1 -type [resp. τ_2 -type] and simply, will be denoted $2^{(X,\tau_1)}$ [resp. $2^{(X,\tau_2)}$], and the triple $(2^{(X,\tau)},\tau_{1,v},\tau_{2,v})$ will be called an ordinary bihyperspace induced by (X,τ) .

Proof. The proofs are easy.

Example 3.10. Let $X = \{a, b, c\}$ and let τ be the IT on X given by:

$$\tau = \{\phi_I, X_I, A_1, A_2, A_3, A_4, A_5\},\$$

where
$$A_1 = (\{a, b\}, \{c\}), A_2 = (\{b, c\}, \{a\}), A_3 = (\{a\}, \{c\})$$

 $A_4 = (\{b\}, \{a, c\}), A_5 = (\phi, \{a, c\}).$

Then

$$\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\$$

and

$$\tau_2 = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}.$$

Thus $\tau_1^c = \{\phi, X, \{a\}, \{c\}, \{b, c\}, \{a, c\}\}$ and $\tau_2^c = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}.$ where τ_1^c and τ_2^c denote the families of closed sets in (X, τ_1) and (X, τ_2) , respectively. So $\tau_{1,v} = \{\{\phi\}, \{\{a\}\}, \{\{c\}\}, \{\{b, c\}\}, \{\{a, c\}\}, \{\{b, c\}, \{a, c\}\}, 2^{(X, \tau_1)}\}$ and

$$\tau_{2,v} = \{\{\phi\}, \{\{a\}\}, \{\{c\}\}, \{\{a,c\}\}, 2^{(X,\tau_2)}\}.$$

Proposition 3.11. Let X be an ITS, $A, B \in IS(X)$ and let $(A_{\alpha})_{\alpha \in \Gamma} \subset IS(X)$. Then $2^{A \cap B} = 2^A \cap 2^B$ and generally, $2^{\bigcap_{\alpha \in \Gamma} A_{\alpha}} = \bigcap_{\alpha \in \Gamma} A_{\alpha}$, where $2^A = \{E \in 2^{(X,\tau)} : E \subset A\}$.

Proof.
$$E \in 2^{A \cap B} \Leftrightarrow E \in 2^{(X,\tau)}$$
 such that $E \subset A \cap B$
 $\Leftrightarrow E \in 2^{(X,\tau)}$ such that $E \subset A$ and $E \subset B$
 $\Leftrightarrow E \in 2^A$ and $E \in 2^B$, i.e., $E \in 2^A \cap 2^B$.

On the other hand,

$$\begin{split} E \in 2^{\bigcap_{\alpha \in \Gamma} A_{\alpha}} &\Leftrightarrow E \in 2^{X_I} \text{ such that } E \subset \bigcap_{\alpha \in \Gamma} A_{\alpha} \\ &\Leftrightarrow E \in 2^{X_I} \text{ such that } E \subset A_{\alpha}, \text{ for each } \alpha \in \Gamma \\ &\Leftrightarrow E \in 2^{X_I}, \text{ for each } \alpha \in \Gamma \\ &\Leftrightarrow E \in \bigcap_{\alpha \in \Gamma} 2^{A_{\alpha}}. \end{split}$$

Definition 3.12 ([3]). An ITS X is said to be a:

- (i) $T_1(i)$ -space, if for any $x \neq y \in X$, there exist $U, V \in IO(X)$ such that $x_I \in U, y_I \notin U$ and $x_I \notin V, y_I \in V$,
- (ii) $T_1(ii)$ -space, if for any $x \neq y \in X$, there exist $U, V \in IO(X)$ such that $x_{IV} \in U, y_{IV} \notin U$ and $x_{IV} \notin V, y_{IV} \in V$,
- (iii) $T_1(iii)$ -space, if for any $x \neq y \in X$, there exist $U, V \in IO(X)$ such that $x_I \in U \subset y_I^c$ and $y_I \in V \subset x_I^c$,
- (iv) $T_1(iv)$ -space, if for any $x \neq y \in X$, there exist $U, V \in IO(X)$ such that $x_{IV} \in U \subset y_{IV}^c$ and $y_{IV} \in V \subset x_{IV}^c$,
- (v) T₁(v)-space, if for any $x \neq y \in X$, there exist $U, V \in IO(X)$ such that $y_I \notin U$ and $x_I \notin V$,

- (vi) $T_1(vi)$ -space, if for any $x \neq y \in X$, there exist $U, V \in IO(X)$ such that $y_{IV} \notin U$ and $x_{IV} \notin V$,
- (vii) $T_1(vii)$ -space, if for each $x \in X$, $x_I \in IC(X)$,
- (viii) $T_1(viii)$ -space, if for each $x \in X$, $x_{IV} \in IC(X)$.

Result 3.13 ([3], Theorem 3.2). Let (X, τ) be an ITS. Then the following implications are true:

Result 3.14 ([3], Proposition 3.11). Let (X, τ) be an ITS. Then

- (1) (X, τ) is $T_1(i)$ if and only if (X, τ_1) is T_1 ,
- (2) (X, τ) is $T_1(ii)$ if and only if (X, τ_2) is T_1 ,
- (3) (X, τ) is $T_1(i)$ if and only if $(X, \tau_{0,1})$ is $T_1(i)$,
- (4) (X,τ) is $T_1(ii)$ if and only if $(X,\tau_{0,2})$ is $T_1(ii)$.

Proposition 3.15. Let (X,τ) be an ITS such that $\tau \subset IS_*(X)$. Then

- (1) (X, τ) is $T_1(vii)$ if and only if $(X, \tau_{0,1})$ is $T_1(vii)$,
- (2) (X, τ) is $T_1(viii)$ if and only if $(X, \tau_{0,1})$ is $T_1(viii)$.

Proof. For any $A \in IS_*(X)$, we can easily see that $[]A^c = ([]A)^c$. Then from this fact and Definition 2.16 (i), we can prove that (1) and (2) hold.

Proposition 3.16. Let (X, τ) be an ITS.

- (1) If (X, τ) is $T_1(vii)$, then (X, τ_1) is T_1 , i.e., $\{x\}$ is closed in (X, τ_1) , for each $x \in X$.
- (2) If (X, τ) is $T_1(viii)$, then (X, τ_2) is T_1 , i.e., $\{x\}$ is closed in (X, τ_2) , for each $x \in X$.
- *Proof.* (1) Suppose (X, τ) is $T_1(vii)$ and let $x \neq y \in X$. Then clearly, x_I , $y_I \in IC(X)$. Thus x_I^c , $y_I^c \in \tau$. Moreover, $x_I \notin x_I^c$, $x_I \in y_I^c$ and $y_I \in x_I^c$, $y_I \notin y_I^c$. So (X, τ) is $T_1(i)$. Hence by Result 3.14 (1), (X, τ_1) is T_1 .

(2) The proof is similar.

Theorem 3.17. Let X be $T_1(iii)$ [resp. $T_1(viii)$]. Then $A \subset B$ if and only if $2^A \subset 2^B$ and thus A = B if and only if $2^A = 2^B$.

Proof. (\Rightarrow) : It is obvious.

(⇐): Suppose $2^A \subset 2^B$ and let $p_I \in A$. Since X is $T_1(iii)$, by Result 3.13, it is $T_1(vii)$. Then $p_I \in IC(X)$ and $p_I \subset A$. Thus $p_I \in 2^A$. By the hypothesis, $p_I \in 2^B$, i.e., $p_I \subset B$. So $p_I \in B$. Hence $A \subset B$.

Now let $p_{IV} \in A$. Since X is $T_1(viii)$, by Definition 3.12, $p_{IV} \in IC(X)$. Then $p_{IV} \in 2^A$. Thus by the hypothesis, $p_I \in 2^B$, i.e., $p_I \subset B$. So $p_I \in B$. Hence $A \subset B$. This completes the proof.

Proposition 3.18. Let (X, τ) be an ITS. Then

$$(2^{A^c})^c = 2^{X_I} - 2^{A^c} = \{ E \in 2^{(X,\tau)} : E \cap A \neq \phi_I \}.$$

Proof.
$$E \in (2^{A^c})^c \Leftrightarrow E \notin 2^{A^c} \Leftrightarrow E \not\subset A^c \Leftrightarrow E_T \not\subset A_F \text{ or } E_F \not\supset A_T$$

 $\Leftrightarrow E_T \cap A_T \not\subset A_F \cap A_T = \phi \text{ or } E_F \cup A_T \not\supset A_T \cup A_T = A_T$
 $\Leftrightarrow E \cap A \neq \phi_I$.

Theorem 3.19. Let (X,τ) be a $T_1(iii)$ -space and let $A \in IS(X)$. Then

$$2^{Icl(A)} = cl(2^A),$$

where $cl(2^A)$ denotes the closure of 2^A in $2^{(X,\tau)}$.

Proof. It is clear that $A \subset Icl(A)$. Then $2^A \subset 2^{Icl(A)}$.

Let $E \in 2^{Icl(A)}$, i.e., $E \subset Icl(A)$. Let $\langle U_1, ..., U_n \rangle_{\tau_v}$ containing E. Then $E \subset \bigcup_{j=1}^n U_j$ and $E \cap U_j \neq \phi_I$, for j=0,1,2,...,n. Since $E \subset Icl(A)$, there exists $p_{j,I} \in A \cap U_j$, for j=1,2,...,n. Let $F = \bigcup \{p_{1,I},...,p_{n,I}\}$. Since (X,τ) is a $T_1(iii)$ -space, by Definition 3.12 and Result 3.13, $p_{j,I} \in IC(X)$, for j=1,2,...,n. Thus $F \in IC(X)$. So $F \in 2^A \cap \langle U_1,...,U_n \rangle_{\tau_v}$. Hence $E \in cl(2^A)$, i.e., $2^A \subset 2^{Icl(A)} \subset cl(2^A)$. Therefore $2^{Icl(A)} = cl(2^A)$.

The following is the immediate result of Theorem 3.19.

Corollary 3.20. Let (X, τ) be a $T_1(iii)$ -space and let $A \in IC(X)$. Then 2^A is closed in $2^{(X,\tau)}$.

Proof. Since $A \in IC(X)$, Icl(A) = A. Then by 3.19, $cl(2^A) = 2^{Icl(A)} = 2^A$. Thus 2^A is closed in $2^{(X,\tau)}$.

Theorem 3.21. Let (X, τ) be a $T_1(iii)$ -space and let $A \in IS(X)$. Then

$$2^{Iint(A)} = int(2^A).$$

where $int(2^A)$ denotes the interior of 2^A in $2^{(X,\tau)}$.

Proof. It is clear that $Iint(A) \subset A$. Then $2^{Iint(A)} \subset 2^A$.

Assume that $E \notin 2^{Iint(A)}$. Then $E \not\subset Iint(A)$. Thus there exists $a \in X$ such that $a_I \in E$ but $a_I \notin Iint(A)$. Let $E \in U_1, ..., U_n >_{\tau_v}$. Then $E \subset \bigcup_{j=1}^n U_j$ and $E \cap U_j \neq \phi_I$, for j = 1, 2, ..., n. Since $a_I \in U_j \in \tau$, for some j and $a_I \notin Iint(A)$, $U_j \not\subset Iint(A)$. Thus there exists $b_j \in X$ such that $b_{j,I} \in U_j$ but $b_{j,I} \notin A$. Since (X,τ) is a $T_1(iii)$ -space, $b_{j,I} \in IC(X)$. Let $F = E \cup b_{j,I}$. Then clearly, $F \not\subset A$. Furthermore, $F \subset \bigcup_{j=1}^n U_j$ and $F \cap U_j \neq \phi_I$, for j = 1, 2, ..., n. Thus $F \in U_1, ..., U_n >_{\tau_v}$. So each neighbourhood of E = 1, 2, ..., n contains an E = 1, 2, ..., n i.e., $E \in (2^A)^c$. Hence $E \in Cl((2^A)^c)$, i.e., $E \notin Cl((2^A)^c)$, i.e., $E \notin Cl((2^A)^c)$ i.e., $E \notin Cl((2^A$

The following is the immediate result of Result 2.17 and Theorems 3.21.

Corollary 3.22. Let (X, τ) be a $T_1(iii)$ -space and let $A \in IC(X)$. Then $(2^{A^c})^c$ is closed in $2^{(X,\tau)}$.

 $cl((2^{A^c})^c) = [int(2^{A^c})]^c$ Proof. $=(2^{IintA^c})^c$ [By Theorem 3.21] $= [(2^{(Icl(A)^c}]^c]^c \text{ [By Result 2.17]}$ $=(2^{A^c})^c$. [Since $A \in IC(X)$] Then $(2^{A^c})^c$ is closed in $2^{(X,\tau)}$.

Theorem 3.23. Let (X, τ) be $T_1(iii)$ [resp. $T_1(viii)$].

 $(1) < U_1, \dots, U_n > \subset < V_1, \dots, V_m > if and only if \bigcup_{i=1}^n U_i \subset \bigcup_{j=1}^m V_j$ and there is U_i such that $U_i \subset V_j$, for each V_j .

(2) $cl(\langle U_1, \cdots, U_n \rangle) = \langle Icl(U_1), \cdots, Icl(U_n) \rangle$, where $\tau \subset IS_*(X)$.

Proof. (1) $\mathfrak{U}=< U_1, \cdots, U_n>$ and $\mathfrak{V}=< V_1, \cdots, V_m>$. Suppose $\mathfrak{U}\subset \mathfrak{V}$ and assume that $\bigcup_{i=1}^n U_i \not\subset \bigcup_{j=1}^m V_j$, say $x_{n+1,I} \in \bigcup_{i=1}^n U_i$ but $x_{n+1,I} \notin \bigcup_{j=1}^m V_j$. Let $x_{i,I} \in U_i$, for each $i = 1, \dots, n$ and let $E = \bigcup \{x_{i,I} : i = 1, \dots, n+1\}$. Since (X, τ) is $T_1(iii)$, by Result 3.13, $x_{i,I} \in IC(X)$, for each $i = 1, \dots, n+1$. Then $E \in IC(X)$. Thus $E \in \mathfrak{U} - \mathfrak{V}$. This contradicts the fact that $\mathfrak{U} \subset \mathfrak{V}$. So $\bigcup_{i=1}^n U_i \subset \bigcup_{j=1}^m V_j$. Now assume that there is V_j such that $U_i - V_j \neq \phi$, for all $i = 1, \dots, n$ and let $x_{i,I} \in U_i - V_i$. Let $F = \bigcup \{x_{i,I} : i = 1, \dots, n\}$. Then by 3.13, $x_{i,I} \in IC(X)$, for each $i=1,\cdots,n$. Thus $F\in IC(X)$. So $F\in\mathfrak{U}-\mathfrak{V}$. This contradicts the fact that $\mathfrak{U} \subset \mathfrak{V}$. Hence there is U_i such that $U_i \subset V_i$, for each V_i .

Suppose $\mathfrak{U} \subset \mathfrak{V}$ and assume that $\bigcup_{i=1}^n U_i \not\subset \bigcup_{j=1}^m V_j$, say $x_{n+1,IV} \in \bigcup_{i=1}^n U_i$ but $x_{n+1,IV} \notin \bigcup_{j=1}^m V_j$. Let $x_{i,IV} \in U_i$, for each $i=1,\cdots,n$ and let $E=\cup\{x_{i,IV}: i=1,\cdots,n\}$ $1, \dots, n+1$. Since (X, τ) is $T_1(viii)$, by Definition 3.12, $x_{i,IV} \in IC(X)$, for each $i=1,\cdots,n+1$. Then $E\in IC(X)$. Thus $E\in \mathfrak{U}-\mathfrak{V}$. This contradicts the fact that $\mathfrak{U}\subset\mathfrak{V}$. So $\bigcup_{i=1}^n U_i\subset\bigcup_{j=1}^m V_j$. Now assume that there is V_j such that $U_i-V_j\neq\phi$, for all $i=1,\dots,n$ and let $x_{i,IV}\in U_i-V_j$. Let $F=\cup\{x_{i,IV}:i=1,\dots,n\}$. Then by Definition 3.12, $x_{i,IV} \in IC(X)$, for each $i = 1, \dots, n$. Thus $F \in IC(X)$. So $F \in \mathfrak{U} - \mathfrak{V}$. This contradicts the fact that $\mathfrak{U} \subset \mathfrak{V}$. Hence there is U_i such that $U_i \subset V_j$, for each V_j .

Conversely, suppose the necessary conditions hold, and let $E \in 2^{(X,\tau)}$ and let $E \in \mathfrak{U}$. Then clearly, $E \subset \bigcup_{i=1}^n U_i$. Thus by the hypothesis, $E \subset \bigcup_{j=1}^m V_j$. Now let U_i be such that $U_i \subset V_j$. Since $E \cap U_i \neq \phi_I$ and $E \cap V_j \neq \phi_I$, $E \cap V_j \neq \phi_I$, for each j. So $E \in \mathfrak{V}$. Hence $\mathfrak{U} \subset \mathfrak{V}$.

(2) Let $E \in \langle Icl(U_1), \cdots, Icl(U_n) \rangle$, let $\mathfrak{V} = \langle V_1, \cdots, V_m \rangle \in N_{\tau_v}(E)$, and let $U = \bigcup_{i=1}^n U_i$ and $V = \bigcup_{j=1}^m V_i$. Since $\mathfrak{V} \in N_{\tau_v}(E)$, $E \in \mathfrak{V}$, i.e., $E \subset V$. Thus $E \subset Icl(V)$. Moreover, $E \cap Icl(U_i) \neq \phi_I$, for $i = 1, \dots, n$ and $E \cap V_i \neq \phi_I$, for $j=1,\cdots,m$. So $V\cap Icl(U_i)\neq \phi_I\neq V_j\cap Icl(U)$ imply that $V\cap U_i\neq \phi_I\neq V_j\cap U$, for $i = 1, \dots, n$ and $j = 1, \dots, m$. Choose $x_{i,I} \in V \cap U_i$ [resp. $x_{i,IV} \in V \cap U_i$], for $i = 1, \dots, n$ and $y_{j,I} \in V_j \cap U$ [resp. $y_{j,IV} \in V_j \cap U$], for $j = 1, \dots, m$ and let $F = [\bigcup_{i=1}^{n} x_{i,I}] \cup [\bigcup_{j=1}^{m} y_{j,I}]$ [resp. $F = [\bigcup_{i=1}^{n} x_{i,IV}] \cup [\bigcup_{j=1}^{m} y_{j,IV}]$]. Since (X, τ) be both $T_1(iii)$ and $T_1(viii)$, by Result 3.13 [resp. Definition 3.12], $F \in IC(X)$. Moreover, $F \in \mathfrak{U} \cap \mathfrak{V} \neq \phi$. So E is a limit point of \mathfrak{U} , i.e., $E \in cl(\mathfrak{U})$. Hence $\langle Icl(U_1), \cdots, Icl(U_n) \rangle \subset cl \langle U_1, \cdots, U_n \rangle.$

On the other hand, we can easily that

$$< Icl(U_1), \cdots, Icl(U_n) > = (\bigcap_{i=1}^n \{ E \in 2^{(X,\tau)} : E \cap Icl(U_i) \neq \phi_I \}) \cap < Icl(U) > .$$

Then by Corollary 3.22, $\{E \in 2^{(X,\tau)} : E \cap Icl(U_i) \neq \phi_I\}$ is closed in $2^{(X,\tau)}$. Thus $(\bigcap_{i=1}^n \{E \in 2^{(X,\tau)} : E \cap Icl(U_i) \neq \phi_I\}) \cap \langle Icl(U) \rangle$ is closed in $2^{(X,\tau)}$. So $\langle Icl(U_1), \dots, Icl(U_n) \rangle$ is closed in $2^{(X,\tau)}$ and $\mathfrak{V} \subset \langle Icl(U_1), \dots, Icl(U_n) \rangle$. Hence $cl(\mathfrak{U}) \subset \langle Icl(U_1), \dots, Icl(U_n) \rangle$. This completes the proof.

4. The relationships between openess in ITS (X, τ) and its hyperspace $2^{(X, \tau)}$

In this section, we find some relationships between openess in an ITS (X, τ) and its hyperspace $2^{(X,\tau)}$.

Result 4.1 ([11], Proposition 3.16). Let (X, τ) be a ITS such that $\tau \subset IS_*(X)$ and let $A \in IS_*(X)$.

- (1) If there is $U \in \tau$ such that $a_I \in U \subset A$, for each $a_I \in A$, then $A \in \tau$.
- (2) If there is $U \in \tau$ such that $a_{IV} \in U \subset A$, for each $a_{IV} \in A$, then $A \in \tau$.

Proposition 4.2. Let (X, τ) be $T_1(iii)$ /resp. $T_1(viii)$ /.

- (1) If $\{U_j\}_{j\in J}$ is a neighborhood base at x_I [resp. x_{IV}], then $\{\langle U_j \rangle\}_{j\in J}$ is a neighborhood base at $\{x_I\}$ [resp. $\{x_{IV}\}$] in $2^{(X,\tau)}$.
 - (2) If \mathfrak{O} is open in $2^{(X,\tau)}$, then $\cup \mathfrak{O} \in \tau$, where $\tau \subset IS_*(X)$.
 - (3) If $U \in \tau$, then $2^U = \langle U \rangle$ is open in $2^{(X,\tau)}$, where $\tau \in IS_*(X)$.
- Proof. (1) It is clear that $\{x_I\} \in 2^{(X,\tau)}$ [resp. $\{x_{IV}\} \in 2^{(X,\tau)}$]. Let \mathfrak{U} , $\mathfrak{V} \in \{< U_j >\}_{j \in J}$ such that $\{x_I\} \in \mathfrak{U} \cap \mathfrak{V}$ [resp. $\{x_{IV}\} \in \mathfrak{U} \cap \mathfrak{V}$]. Then there are $i, j \in J$ such that $\mathfrak{U} = < U_i >$, $\mathfrak{V} = < V_j >$. Since $\{x_I\} \in \mathfrak{U} \cap \mathfrak{V}$ [resp. $x_{IV} \in \mathfrak{U} \cap \mathfrak{V}$], $\{x_I\} \in < U_i >$ and $\{x_I\} \in < U_j >$ [resp. $x_{IV} \in < U_i >$ and $x_{IV} \in < U_j >$]. Thus $\{x_I\} \subset U_i$ and $\{x_I\} \subset U_j$ [resp. $\{x_{IV}\} \subset U_i$ and $\{x_{IV}\} \subset U_j$], i.e., $x_I \in U_i$ and $x_I \in U_j$ [resp. $x_{IV} \in U_j$]. So by the hypothesis, there is $k \in J$ such that $x_I \in U_k \subset U_i \cap U_j$ [resp. $x_{IV} \in U_k \subset U_i \cap U_j$]. Hence $\{x_I\} \in < U_k > \subset < U_i >$ $\cap < U_j >$ [resp. $\{x_{IV}\} \in < U_k > \subset < U_i > \cap < U_j >$]. This completes the proof.
- (2) It is sufficient to show that for each base element $\mathfrak{U}=\langle U_1,\cdots,U_n\rangle,\bigcup\mathfrak{U}\in\tau.$ Let $U=\bigcup\mathfrak{U}$ and let $x_I\in U$ [resp. $x_{IV}\in U$]. Let $O\in\tau$ such that $x_I\in O\subset\bigcup_{i=1}^nU_i$ [resp. $x_{IV}\in O\subset\bigcup_{i=1}^nU_i$] and let $y_I\in O$ [resp. $y_{IV}\in O$]. Choose $x_{i,I}\in U_i$ [resp. $x_{i,IV}\in U_i$], for for $i=1,\cdots,n$ and let $E=\bigcup\{x_{1,I},\cdots,x_{n,I},y_I\}$ [resp. $E=\bigcup\{x_{1,V},\cdots,x_{n,IV},y_{IV}\}$]. Since (X,τ) is $T_1(iii)$ [resp. $T_1(viii)$], by Result 3.13 [resp. Definition 3.12], $E\in IC(X)$. Moreover, $E\subset\bigcup_{i=1}^nU_i$ and $E\cap U_i\neq\phi_I$. Then $y_I\in E\in\mathfrak{U}$ [resp. $y_{IV}\in E\in\mathfrak{U}$]. So $y_I\in U$. Hence $O\subset U$, i.e., $x_I\in O\subset U$ [resp. $x_{IV}\in O\subset U$]. Therefore by Result 4.1, $U=\bigcup\mathfrak{U}\in\tau$.
 - (3) By Theorem 3.21, $2^U = 2^{Iint(U)} = int(2^U)$. Then 2^U is open in $2^{(X,\tau)}$.

The followings are immediate results of Propositions 3.15 and 4.2.

Corollary 4.3. Let (X, τ) be $T_1(iii)$ [resp. $T_1(viii)$] such that $\tau \subset IS_*(X)$.

- (1) If $\{U_j\}_{j\in J}$ is a neighborhood base at x_I [resp. x_{IV}], then $\{<[]U_j>\}_{j\in J}$ [resp. $\{<<>U_j>\}_{j\in J}$ is a neighborhood base at $\{x_I\}$ [resp. $\{x_{IV}\}$] in $2^{(X,\tau_{0,1})}$ [resp. $2^{(X,\tau_{0,2})}$].
 - (2) If \mathfrak{O} is open in $2^{(X,\tau_{0,1})}$ [resp. $2^{(X,\tau_{0,2})}$], then $\cup \mathfrak{O} \in \tau_{0,1}$ [resp. $\cup \mathfrak{O} \in \tau_{0,2}$].
- (3) If $U \in \tau_{0,1}$ [resp. $U \in \tau_{0,2}$], then $2^U = \langle U \rangle$ is open in $2^{(X,\tau_{0,1})}$ [resp. $2^{(X,\tau_{0,2})}$].

The followings are immediate results of Proposition 4.2 and Result 3.14.

Corollary 4.4. Let (X, τ) be $T_1(iii)$ [resp. $T_1(viii)$].

- (1) If $\{U_j\}_{j\in J}$ is a neighborhood base at x_I [resp. x_{IV}], then $\{\langle U_{j,T}\rangle\}_{j\in J}$ [resp. $\{\langle U_{j,F}^c \rangle\}_{j \in J}$ is a neighborhood base at $\{x\}$ in $2^{(X,\tau_1)}$ [resp. $2^{(X,\tau_2)}$].

 - (2) If \mathfrak{O} is open in $2^{(X,\tau_1)}$ [resp. $2^{(X,\tau_2)}$], then $\cup \mathfrak{O} \in \tau_1$ [resp. $\cup \mathfrak{O} \in \tau_2$]. (3) If $U \in \tau_1$ [resp. $U \in \tau_2$], then $2^U = \langle U \rangle$ is open in $2^{(X,\tau_1)}$ [resp. $2^{(X,\tau_2)}$].

Definition 4.5 ([6]). Let (X, τ) be an ITS and let $A \in IS(X)$.

- (i) $\mathfrak{A} \subset IS(X)$ is called a cover of A, if $A \subset \bigcup_{A \in \mathfrak{A}} A$.
- (ii) The cover \mathfrak{A} of A is called an open cover, if $A \in \tau$, for each $A \in \mathfrak{A}$.

In particular, \mathfrak{A} is called an open cover of X, if $\mathfrak{A} \subset \tau$ and $A \subset \bigcup \mathfrak{A}$.

- (iii) A is called an intuitionistic compact subset of X, if every open cover of A has a finite subcover.
 - (iv) (X,τ) is said to be compact, if every open cover of X has a finite subcover.
- (v) A family $\mathfrak{A} \subset IS(X)$ satisfies the finite intersection property (in short, FIP), if for each finite subfamily \mathfrak{A}' , $\bigcap \mathfrak{A}' \neq \phi_I$.

Result 4.6 ([6], Proposition 5.4). Let (X,τ) be an ITS. Then (X,τ) is compact if and only if $(X, \tau_{0,1})$ is compact. In fact, (X, τ) is compact if and only if (X, τ_1) is compact.

Proposition 4.7. Let (X,τ) be $T_1(iii)$ such that $\tau \subset IS_*(X)$. If $\mathfrak U$ is open in the subspace $\mathfrak{K}_{2(X,\tau)}(X)$, then $\bigcup \mathfrak{U} \in \tau$.

Proof. Without loss of generality, let $\mathfrak{U} = \langle U_1, \cdots, U_n \rangle \cap \mathfrak{K}_{2(X,\tau)}(X)$ and let $U = \bigcup \mathfrak{U} = \{A : A \in \mathfrak{U}\}$. Let $x_I \in U$. Then there is j such that $x_I \in U_j$. Let us take $x_{i,I} \in U_i$, for each $i \neq j$. For each $y_I \in U_i$, let

$$E_{y_I} = \bigcup \{x_{1,I}, \cdots, x_{i-1,I}, y_I, x_{i+1,I}, \cdots, x_{n,I}\}.$$

Then by Result 3.13, $E_{y_I} \in \mathfrak{U}$. Thus $y_I \in E_{y_I} \subset U$. So $x_I \in U_j \subset U$. Hence by Result 4.1, $\bigcup \mathfrak{U} \in \tau$.

The followings are immediate results of Proposition 4.7 and Results 3.13 and 4.6.

Corollary 4.8. Let (X, τ) be $T_1(iii)$.

- (1) If \mathfrak{U} is open in the subspace $\mathfrak{K}_{2(X,\tau_{0,1})}(X)$, then $\bigcup \mathfrak{U} \in \tau_{0,1}$.
- (2) If \mathfrak{U} is open in $\mathfrak{K}_{2(X,\tau_1)}(X)$, then $\cup \mathfrak{U} \in \tau_1$.

Proposition 4.9. Let (X,τ) be $T_1(iii)$ such that $\tau \subset IS_*(X)$. If $\mathfrak U$ is open in the subspace $\mathfrak{F}_{2(X,\tau),n}(X)$, then $\bigcup \mathfrak{U} \in \tau$.

Proof. Let $U = \bigcup \mathfrak{U}$ and let $x_{1,I} \in U$. Then there is $E \in \mathfrak{U}$ such that $x_{1,I} \in U \in \mathcal{U}$ \mathfrak{U} . Let $E = \bigcup \{x_{1,I}, \cdots, x_{m,I}\}, m \leq n$. Since \mathfrak{U} is open in $\mathfrak{F}_{2(X,\tau),n}(X)$, there is a basic open set $\langle U_1, \cdots, U_k \rangle \cap \mathfrak{K}_{2^{(X,\tau)},n}(X)$ such that $E \in \langle U_1, \cdots, U_k \rangle$ $\cap \mathfrak{K}_{2(X,\tau),n}(X) \in \mathfrak{U}$. We may assume that $x_{i,I} \in U_1$. Let $\mathfrak{F} = \{U_1, \cdots, U_k\}$. For each $x_{i,I} \in E$, let $\mathfrak{F}_i = \{U_j \in \mathfrak{F} : x_{i,I} \in U_j\}$ and let $W_i = \bigcap \mathfrak{F}_i$. Then by Theorem 3.23(1),

$$E \in \langle W_1, \cdots, W_m \rangle \cap \mathfrak{F}_{2^{(X,\tau)},n}(X) \subset \langle U_1, \cdots, U_k \rangle \cap \mathfrak{F}_{2^{(X,\tau)},n}(X).$$

Let $y_{1,I} \in W_1$. Then

$$E_{y,I} = \{y_{1,I}, x_2, \cdots, x_m\} \in W_1, \cdots, W_m > 0 \ \mathfrak{F}_{2^{(X,\tau)},n}(X)$$

Thus $E_{y,I} \in \mathfrak{U}$. So $E_{y,I} \subset U$. It follows that $x_{1,I}, y_I \in W_1 \subset U$. Hence by Result **4.1**, $\bigcup \mathfrak{U} \in \tau$.

The following is the immediate result of Proposition 4.9.

Corollary 4.10. Let (X,τ) be $T_1(iii)$ such that $\tau \subset IS_*(X)$. If $\mathfrak U$ is open in the subspace $\mathfrak{F}_{2(X,\tau)}(X)$, then $\bigcup \mathfrak{U} \in \tau$.

Definition 4.11 ([13]). An ITS X is said to be connected, if it cannot be expressed as the union of two non-empty, disjoint open sets in X.

Definition 4.12 ([13]). (X, τ) be an ITS and let $A, B \in IS(X)$.

- (i) A and B are said to be separated in X, if $Icl(A) \cap B = A \cap Icl(B) = \phi_I$.
- (ii) A and B are said to form a separation of X, if A and B are said to be separated in X and $A \cup B = X_I$.

Result 4.13 ([13], Theorem 3.4). (X, τ) be an ITS such that $\tau \subset IS_*(X)$. Then the followings are equivalent:

- (1) (X,τ) is connected,
- (2) $(X, \tau_{0,1})$ is connected,
- (3) (X, τ_1) is connected.

Definition 4.14 ([13]). Let (X,τ) be an ITS. Then X is said to be:

- (i) locally connected at $p_I \in X_I$, if for each $U \in N(p_I)$, there is a connected $V \in N(p_I)$ such that $V \subset U$,
 - (ii) locally connected, if it is locally connected at each $p_I \in X_I$.

Definition 4.15 ([12]). (i) A $T_1(i)$ -space X is called a $T_3(i)$ -space, if the following conditions:

[the regular axiom (i)] for any $F \in IC(X)$ such that $x_I \in F^c$, there exist $U, V \in$ IO(X) such that $F \subset U$, $x_I \in V$ and $U \cap V = \phi_I$.

(ii) A $T_1(ii)$ -space X is called a $T_3(ii)$ -space, if the following conditions:

[the regular axiom (ii)] for any $F \in IC(X)$ such that $x_{IV} \in F^c$, there exist $U, V \in IO(X)$ such that $F \subset U$, $x_{IV} \in V$ and $U \cap V = \phi_I$.

Result 4.16 ([12], Theorem 4.4). Let (X, τ) be an ITS such that $\tau \subset IS_*(X)$. Then

- (1) (X, τ) is $T_3(i)$ if and only if (X, τ_1) is T_3 ,
- (2) (X, τ) is $T_3(ii)$ if and only if (X, τ_2) is T_3 .

Result 4.17 ([12], Theorem 4.7). Let (X, τ) be an ITS such that $\tau \subset IS_*(X)$. Then

- (1) (X, τ) is $T_3(i)$ if and only $(X, \tau_{0,1})$ is $T_3(i)$,
- (2) (X, τ) is $T_3(ii)$ if and only $(X, \tau_{0,2})$ is $T_3(ii)$.

Proposition 4.18. Let (X,τ) be locally connected both $T_1(iii)$ and $T_3(i)$ such that $\tau \subset IS_*(X)$. If \mathfrak{U} is open in the subspace $\mathfrak{C}_{2(X,\tau)}(X)$, then $\bigcup \mathfrak{U} \in \tau$.

Proof. Let $x_I \in U = \bigcup \mathfrak{U}$. Without loss of generality, let

$$\mathfrak{U} = \langle U_1, \cdots, U_n \rangle \cap \mathfrak{C}_{2^{(X,\tau)}}(X).$$
15

Then there is $E \in \mathfrak{U}$ such that $x_I \in E$. Since $x_I \in U = \bigcup \mathfrak{U}$, there is i such that $x_I \in U_i$. Since (X, τ) is locally connected both $T_1(iii)$ and $T_3(i)$, by Definitions **4.14** and **4.15**, there is a connected set $V \in \tau$ such that $x_I \in V \subset Icl(V) \subset U_i$. Thus $E \cup Icl(V) \in \mathfrak{U}$. So $V \subset E \cup Icl(V) \subset U$. Hence by Result 4.1 (1), $\bigcup \mathfrak{U} \in \tau$.

The followings are immediate results of Proposition 4.18 and Result 4.17.

Corollary 4.19. Let (X,τ) be locally connected both $T_1(iii)$ and $T_3(i)$ such that $\tau \subset IS_*(X)$. If \mathfrak{U} is open in the subspace $\mathfrak{C}_{2^{(X,\tau_{0,1})}}(X)$, then $\bigcup \mathfrak{U} \in \tau_{0,1}$.

5. Intuitionistic continuous set-valued mappings

In this section, we introduce an intuitionistic set-valued mapping and study its some continuities.

Definition 5.1 ([5]). Let $f: X \to Y$ be a mapping, and let $A \in IS(X)$ and $B \in IS(Y)$. Then

(i) the image of A under f, denoted by f(A), is an IS in Y defined as:

$$f(A) = (f(A)_T, f(A)_F),$$

where $f(A)_T = f(A_T)$ and $f(A)_F = (f(A_F^c))^c$.

(ii) the preimage of B, denoted by $f^{-1}(B)$, is an IS in X defined as:

$$f^{-1}(B) = (f^{-1}(B)_T, f^{-1}(B)_F),$$

where $f^{-1}(B)_T = f^{-1}(B_T)$ and $f^{-1}(B)_F = f^{-1}(B_F)$.

Result 5.2. (See [5], Corollary 2.11) Let $f: X \to Y$ be a mapping and let $A, B, C \in$ $IS(X), (A_j)_{j\in J} \subset IS(X)$ and $D, E, F \in IS(Y), (D_k)_{k\in K} \subset IS(Y)$. Then the followings hold:

- (1) if $B \subset C$, then $f(B) \subset f(C)$ and if $E \subset F$, then $f^{-1}(E) \subset f^{-1}(F)$.
- (2) A ⊂ f⁻¹f(A)) and if f is injective, then A = f⁻¹f(A)),
 (3) f(f⁻¹(D)) ⊂ D and if f is surjective, then f(f⁻¹(D)) = D,
- (4) $f^{-1}(\bigcup D_k) = \bigcup f^{-1}(D_k), f^{-1}(\bigcap D_k) = \bigcap f^{-1}(D_k),$
- (5) $f(\bigcup A_i) = \bigcup f(A_i), f(\bigcap A_i) \subset \bigcap f(A_i),$
- (6) $f(A) = \phi_N$ if and only if $A = \phi_N$ and hence $f(\phi_N) = \phi_N$, in particular if f is surjective, then $f(X_N) = Y_N$,
 - (7) $f^{-1}(Y_N) = Y_N, f^{-1}(\phi_N) = \phi.$
- (8) if f is surjective, then $f(A)^c \subset f(A^c)$ and furthermore, if f is injective, then $f(A)^c = f(A^c),$
 - (9) $f^{-1}(D^c) = (f^{-1}(D))^c$.

Definition 5.3. Let X, Y be non-empty sets. Then a mapping $F: Y \to IS(X)$ is called an intuitionistic set-valued mapping.

Example 5.4. (1) Let $X = \{a, b, c\}, Y = \{1, 2\}$ and let $F : Y \to ISX$ be given by $F(1) = (\{a,b\},\{c\})$ and $F(2) = (\{a\},\{b\})$. Then F is an intuitionistic crisp set-valued mapping. In particular, if $A = (\{a, b\}, \{c\})$, then

$$2^{A} = \{\phi_{I}, (\{a\}, \{c\}), (\{a\}, \{b, c\}), (\{b\}, \{c\}), (\{b\}, \{a, c\}), (\phi, \{c\}), (\phi, \{b, c\}), (\phi, \{a, c\})\}.$$

(2) (See Definition 5.1) Let X, Y be non-empty sets, let $f: X \to Y$ be a mapping. We define two mappings $f_*: IS(X) \to IS(Y)$ and $f_*^{-1}: 2^{Y_I} \to 2^{X_I}$ as follows:

- (i) for each $A \in IS(X)$, $f_*(A) = f(A) = (f(A_T), (f(A_F^c))^c)$,
- (ii) for each $B \in IS(Y)$, $f_*^{-1}(B) = f^{-1}(B) = (f^{-1}(B_T), f^{-1}(B_F))$.

Then f_* and f_*^{-1} are intuitionistic set-valued mappings.

Definition 5.5. Let X, Y be non-empty sets, let $F, G: Y \to IS(X)$ be intuitionistic crisp set-valued mappings and let $\{F_{\alpha}\}_{{\alpha}\in\Gamma}$, where $F_{\alpha}:Y\to IS(X)$ is an intuitionistic crisp set-valued mappings, for each $\alpha \in \Gamma$.

- (i) $F \subset G$ if and only if $F(y) \subset G(y)$, for each $y \in Y$,
- (ii) $(F \cup G)(y) = F(y) \cup G(y)$, for each $y \in Y$,
- (iii) $(F \cap G)(y) = F(y) \cap G(y)$, for each $y \in Y$,
- (iv) $(\bigcup_{\alpha \in \Gamma} F_{\alpha})(y) = \bigcup_{\alpha \in \Gamma} F_{\alpha}$, for each $y \in Y$,
- (v) $(\bigcap_{\alpha \in \Gamma} F_{\alpha})(y) = \bigcap_{\alpha \in \Gamma} F_{\alpha}$, for each $y \in Y$.

Proposition 5.6. Let $F,G:Y\to IS(X)$ be intuitionistic set-valued mappings and let $\{F_{\alpha}\}_{{\alpha}\in\Gamma}$, where $F_{\alpha}:Y\to IS(X)$ is an intuitionistic set-valued mappings, for each $\alpha \in \Gamma$ and let $2^A_* = \{B \in IS(X) : B \subset A\}$, for each $A \in IS(X)$.

- (1) If $F \subset G$, then $G^{-1}(2^A) \subset F^{-1}(2^A)$.
- (2) $(F \cup G)^{-1}(2_*^A) = F^{-1}(2_*^A) \cap G^{-1}(2_*^A)$
- $\begin{array}{c} (2) \ (T \cup G) \ (Z_*) = T \ (Z_*) \cap G \ (Z_*), \\ in \ general, \ (\bigcup_{\alpha \in \Gamma} F_{\alpha})^{-1} (2_*^A) = \bigcap_{\alpha \in \Gamma} F_{\alpha}^{-1} (2_*^A), \\ (3) \ F^{-1} (2_*^A) \cup G^{-1} (2_*^A) \subset (F \cap G)^{-1} (2_*^A), \\ in \ general, \ \bigcup_{\alpha \in \Gamma} F_{\alpha}^{-1} (2_*^A) \subset (\bigcap_{\alpha \in \Gamma} F_{\alpha})^{-1} (2_*^A). \end{array}$
- *Proof.* (1) Let $y \in G^{-1}(2^A_*)$. Then $G(y) \in 2^A_*$. Thus $G(y) \subset A$. Since $F \subset G$, $F(y) \subset G(y)$. So $F(y) \subset A$, i.e., $F(y) \in 2^{A}$. Hence $y \in F^{-1}(2^{A})$. Therefore $G^{-1}(2^A) \subset F^{-1}(2^A_*).$
- (2) Let $y \in (F \cup G)^{-1}(2^A_*) = F^{-1}(2^A_*) \cap G^{-1}(2^A_*)$. Then $(F \cup G)(y) = F(y) \cup G(y) \in$ 2_*^A , i.e., $F(y) \cup G(y) = (F(y)_T \cup G(y)_T, F(y)_F \cap G(y)_F) \subset A$. Thus $F(y)_T \cup G(y)_T \subset A$ A_T and $F(y)_F \cap G(y)_F \supset A_F$. So $F(y)_T \subset A_T$, $G(y)_T \subset A_T$ and $F(y)_F \supset A_F$, $G(y)_F \supset A_F$, i.e., $F(y) \subset A$ and $G(y) \subset A$, i.e., $F(y) \in 2^A_*$ and $G(y) \in 2^A_*$. Hence $y \in F^{-1}(2^A_*)$ and $y \in G^{-1}(2^A_*)$, i.e., $y \in F^{-1}(2^A_*) \cap G^{-1}(2^A_*)$. The converse inclusion is proved similarly.

The proof of the second part is similar.

(3) Let $y \in F^{-1}(2^A_*) \cup G^{-1}(2^A_*)$. Then $y \in F^{-1}(2^A_*)$ or $y \in G^{-1}(2^A_*)$, i.e., $F(y) \subset A$ or $G(y) \subset A$. Then $F(y) \cap G(y) \subset A$. Thus $(F \cap G)(y) \subset A$, i.e., $(F \cap G)(y) \in 2_*^A$. So $y \in (F \cap G)^{-1}(2_*^A)$. Hence the result holds.

The proof of the second part is similar.

Theorem 5.7. Let (X,τ) be an ITS and let (Y,σ) be an ordinary topological space and let $F:(Y,\sigma)\to 2^{(X,\tau)}$ be an intuitionistic set-valued mapping. Then F is continuous if and only if the set

$$(5.5.1) F^{-1}(2^A) = \{ y \in Y : F(y) \in 2^A \} = \{ y \in Y : F(y) \subset A \}$$

is open in Y, whenever $A \in \tau$, and is closed in Y, whenever $A \in IC(X)$. Equivalently, for each $A \in IC(X)$ [resp. $A \in \tau$], the set

$$(5.5.2) Y - F^{-1}(A^c) = \{ y \in Y : F(y) \cap A \neq \phi_I \}$$

is open [resp. closed] in Y.

More precisely, F is continuous at $y \in Y$ if and only if both implication hold:

$$(5.5.3) \hspace{1cm} y \in F^{-1}(2^G) \Rightarrow y \in int(F^{-1}(2^G)), \ whenever \ G \in \tau$$
 and

(5.5.4)
$$y \in cl(F^{-1}(2^K)) \Rightarrow y \in F^{-1}(2^K), \text{ whenever } K \in IC(X).$$

Proof. Suppose F is continuous at $y_0 \in Y$. Let G be open in $2^{(X,\tau)}$ and suppose $y \in F^{-1}(G)$. Then $F(y) \in G$. Since G is open in $2^{(X,\tau)}$, G is a neighbourhood of $F(y_0)$. Thus there exists $U \in \tau_v$ such that $F(y_0) \in F(U) \subset G$. So $y_0 \in U \subset F^{-1}(G)$. Hence $y_0 \in int(F^{-1}(G))$.

Now let K be closed in $2^{(X,\tau)}$ and suppose $y_0 \in cl(F^{-1}(K))$. By result 5.2 (9),

$$cl(F^{-1}(K)) = cl(F^{-1}((K^c)^c) = cl(F^{-1}(K^c))^c = (int(F^{-1}(K^c)))^c.$$

Then $y_0 \in (int(F^{-1}(K^c)))^c$. Thus $y_0 \notin int(F^{-1}(K^c)) = int((F^{-1}(K))^c)$. Since $int((F^{-1}(K))^c) \subset (F^{-1}(K))^c$, $y_0 \notin (F^{-1}(K))^c$. So $y_0 \in F^{-1}(K)$. Hence the following implications:

(5.5.5)
$$y_0 \in F^{-1}(G) \Rightarrow y_0 \in int(F^{-1}(G)), \text{ whenever } G \text{ is open in } 2^{(X,\tau)}$$
 and

(5.5.6)
$$y_0 \in cl(F^{-1}(K)) \Rightarrow y_0 \in F^{-1}(K)$$
, whenever K is closed in $2^{(X,\tau)}$.

Therefore by replacing G by 2^G for $G \in \tau$, and K by 2^K for $K \in IC(X)$, we can obtain two implications (5.5.3) and (5.5.4).

Conversely, suppose the implication (5.5.5) holds. Then we can easily see that F is continuous at $y_0 \in Y$. If the implication (5.5.6) holds, then we can easily see that F is continuous at $y_0 \in Y$. Moreover, since the range of G can be restricted to a subbase of $2^{(X,\tau)}$, we may assume that $G = 2^A$ or $G = (2^{A^c})^c$ with $A \in \tau$. In the first case, (5.5.5) follows directly from (5.5.3). In the second case, (5.5.6) can be deduced from (5.5.4).

Definition 5.8 ([6]). Let X, Y be an ITSs. Then a mapping $f: X \to Y$ is said to be continuous, if $f^{-1}(V) \in IO(X)$, for each $V \in IO(Y)$.

Definition 5.9. Let X, Y be ITSs. Then a mapping $f: X \to Y$ is said to be:

- (i) open [6], if $f(A) \in IO(Y)$, for each $A \in IO(X)$,
- (ii) closed [18], if $f(F) \in IC(Y)$, for each $F \in IC(X)$.

Theorem 5.10. Let $(X, \tau), (Y, \sigma)$ be $T_1(iii)$ -spaces such that $\tau \subset IS_*(X)$ and $\sigma \subset IS_*(Y)$, and let $f: X \to Y$ be intuitionistic continuous. Then the mapping $f_*^{-1}: 2^{(Y,\sigma)} \to 2^{(X,\tau)}$ is continuous if and only if f is both intuitionistic open and closed.

Proof. Suppose $f_*^{-1}: 2^{Y_I} \to 2^{X_I}$ is continuous and let $G \in \tau$. Since X is a $T_1(iii)$ -space, by Proposition 4.2 (3), 2^G is open in $2^{(X,\tau)}$. Then by the hypothesis and (5.5.1), $(f_*^{-1})^{-1}(2^G) = (f^{-1})^{-1}(2^G) = f(2^G)$ is open in $2^{(Y,\sigma)}$. Thus

$$f(2^G) = \{ f(A) \in IS(Y) : A \in 2^G \} = \{ f(A) \in IS(Y) : A \subset G \} = 2^{f(G)}$$

is open in $2^{(Y,\sigma)}$. So by Theorem 3.21, $f(G) \in \sigma$, i.e., f is intuitionistic open.

Now let $F \in IC(X)$. Then by Corollary 3.20, 2^F is closed in $2^{(X,\tau)}$. Since f_*^{-1} is continuous, $(f_*^{-1})^{-1}(2^F) = (f^{-1})^{-1}(2^F) = f(2^F) = 2^{f(F)}$ is closed in $2^{(Y,\sigma)}$. Thus

by Theorem 3.19, $f(F) \in IC(Y)$. So f is intuitionistic closed. Hence f is both intuitionistic closed. Therefore f is both intuitionistic open and closed.

The converse can be easily proved.

The following is the immediate result of Proposition 5.6 (2) and Theorem 5.7.

Proposition 5.11. Let (X,τ) be an ITS and (Y,σ) be an ordinary topological space and let $F,G:(Y,\sigma)\to 2^{(X,\tau)}$ be intuitionistic set-valued mappings. If F and G are continuous, then $F\cup G$ is continuous.

6. Conclusions

We introduced three types intuitionistic hyperspaces and obtained their some properties. In the future, we expect that we will find some relationships between separation axioms T_0 , T_1 , T_2 , T_3 and T_4 in ITSs and intuitionistic hyperspaces. Also we will deal with separability and axioms of countability between an ITS and its hyperspace.

References

- K. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (September, 1983) (in Bugaria).
- [2] C. Bavithra, M. K. Uma and E. Roja, Feeble compactness of intuitionistic fell topological space, Ann. Fuzzy Math. Inform. 11 (3) (1016) 485–494.
- [3] Sadik Bayhan and D. Coker, On separation axioms in intuitionistic topological spaces, IJMMS 27 (10) (2001) 621–630.
- [4] Sadik Bayhan and D. Coker, Pairwise separation axioms in intuitionistic topological spaces, Hacettepe Journal of Mathematics and Statistics 34 S (2005) 101–114.
- [5] D. Coker A note on intuitionistic sets and intuitionistic points, Tr. J. of Mathematics 20 (1996) 343–351.
- [6] D. Coker An introduction to intuitionistic topological spaces, BUSEFAL 81 (2000) 51–56.
- [7] E. Coskun and D. Coker On neighborhood structures in intuitionistic topological spaces, Math. Balkanica (N. S.) 12 (3-4) (1998) 283-909.
- [8] Taha H. Jassim Completely normal and weak completely normal in intuitionistic topological spaces, International Journal of Scientific and Engineering Research 4 (10) (2013) 438–442.
- [9] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963) 71-0-89.
- [10] J. Kim, P. K. Lim, J. G. Lee, K. Hur, The category of intuitionistic sets, To be submitted.
- [11] J. Kim, P. K. Lim, J. G. Lee, K. Hur, Intuitionistic topological spaces, To be submitted.
- [12] J. Kim, P. K. Lim, J. G. Lee, K. Hur, Separation axioms in intuitionistic topological spaces, To be submitted.
- [13] J. Kim, P. K. Lim, J. G. Lee, K. Hur, Connectedness in intuitionistic topological spaces, To be submitted.
- [14] J. Kim, P. K. Lim, J. G. Lee, K. Hur, Compactness in intuitionistic topological spaces, To be submitted.
- [15] J. G. Lee, P. K. Lim, J. Kim, K. Hur, Intuitionistic limit points and nets, To be submitted.
- [16] J. G. Lee, P. K. Lim, J. Kim, K. Hur, Intuitionistic continuous, closed and open mappings, To be submitted.
- [17] J. G. Lee, P. K. Lim, J. Kim, K. Hur, Intuitionistic relations, To be submitted.
- [18] S. J. Lee and J. M. Chu, Categorical properties of intuitinistic topological spaces, Commun. Korean Math. Soc. 24 (4) (2009) 595–603.
- [19] , E. Michael, Topology on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951) 152–182.
- [20] Ahmet Z. Ozcelik and Serkan Narli, On submaximality in intuitionistic topological spaces, International Scholarly and Scientific Research and Innovation 1 (1) (2007) 64–66.

- [21] A. A. Salama, Mohamed Abdelfattah and S. A. Alblowi, Some Intuitionistic Topological Notions of Intuitionistic Region, Possible Application to GIS Topological Rules, International Journal of Enhanced Research in Management and Computer Applications 3 (5) (2014) 4–9.
- [22] S. Selvanayaki and Gnanambal Ilango, IGPR-continuity and compactness intuitionistic topological spaces, British Journal of Mathematics and Computer Science 11 (2) (2015) 1–8.
- [23] S. Selvanayaki and Gnanambal Ilango, Homeomorphism on intuitionistic topological spaces, Ann. Fuzzy Math. Inform. 11 (6) (2016) 957–966.
- [24] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

J. KIM (junhikim@wku.ac.kr)

Department of Mathematics Education, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea

P. K. LIM (pklim@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea

J. G. LEE (jukolee@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea

K. Hur (kulhur@wku.ac.kr)

Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea